Citation: | XIE Yutong, HUANG Wenqing, LI Shiyang, HUANG Yanhua, LIU Chun, XU Fengmeng, WANG Guoxia. Effects of replacing fish meal with black soldier fly larvae meal on serum immune antioxidant indices, intestinal function and disease resistance of hybrid snakehead (Channa maculata ♀ × Channa argus ♂)[J]. Journal of fisheries of china, 2024, 48(11): 119615. DOI: 10.11964/jfc.20230514017 |
Fish meal is a prevalent source of animal protein in aquatic feed, yet its high cost and an import reliance of up to 80% have hindered the sustainable growth of aquaculture in our country. Thus, it is imperative to identify alternative proteins to replace fish meal. This study aimed to assess the impact of substituting fish meal with black soldier fly larvae meal (BSFLM) on the immune antioxidant status, intestinal flora and disease resistance of hybrid snakehead fish. Five isonitrogenous and isolipid diets were formulated, with fish meal replaced by 7.5% (BSFLM7.5), 15.0% (BSFLM15), 22.5% (BSFLM22.5) and 30.0% (BSFLM30) BSFLM, corresponding to 48.8, 97.6, 146.4 and 195.2 g/kg BSFLM, respectively. A total of 525 hybrid snakeheads with an average body weight of (10.84±0.01) g were randomly assigned to 5 groups, each with 3 replicates 35 fish per replicate. The results indicated that the alkaline phosphatase (AKP) activity in the BSFLM30 group was higher than in the BSFLM7.5 and fish meal (FM) groups (P<0.05). The malondialdehyde (MDA) levels in the BSFLM22.5 group were lower than those in the FM group (P<0.05). No significant differences were observed in the activities of lysozyme (LZM), catalase (CAT), superoxide (SOD), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-Px) among all groups (P>0.05). The richness estimators Sobs, Chao, Ace, as well as Shannon and Simpson diversity indices of the intestinal content flora in the BSFLM15-BSFLM30 groups, were lower than those in the FM and BSFLM7.5 groups (P<0.05), indicating a decrease in species diversity. The relative abundance of Chlamydiae, Proteobacteria, Spirochaetes, Ralstonia and Pseudomonas in the experimental groups was lower than in the control group (P>0.05). Conversely, the BSFLM30 group exhibited higher Sobs, Chao, and Ace indices of intestinal flora compared to the FM and other experimental groups (P<0.05). The relative abundance of Bacteroidetes, Firmicutes, Paludibacter and Sedimentibacter was greater in the BSFLM30 group than in the other groups (P>0.05). The relative abundance of Spirochaetes, Proteobacteria and Ralstonia was lower in the experimental group than that in the control group (P>0.05). The mortality rate following Aeromonas schubertii infection was significantly lower in the BSFLM7.5, BSFLM7.5 and BSFLM22.5 groups than in the FM and BSFLM30 groups (P<0.05). In conclusion, dietary supplementation with BSFLM can enhance immune antioxidant capacity, microbial structure of intestinal contents, increase microbial diversity, improve intestinal function, and bolster resistance to A. schubertii infection. However, the replacement levels should not exceed 22.5%.
[1] |
杨再华, 杨燕, 魏濂蒙, 等. 中国水虻科名录[M]. 北京: 中国农业科学技术出版社, 2008.
Yang Z H, Yang Y, Wei L M, et al. Directory of the Pteranidae in China[M]. Beijing: China Agricultural Science and Technology Press, 2008 (in Chinese).
|
[2] |
姜慧敏, 王文霞, 任苗苗, 等. 黑水虻转化厨余垃圾过程中病原菌灭活规律的研究与综合评价[J]. 环境科学学报, 2020, 40(3): 1011-1022.
Jiang H M, Wang W X, Ren M M, et al. An investigation and comprehensive evaluation on the pathogen inactivation process during the degradation of kitchen waste by the larvae of black soldier fly[J]. Acta Scientiae Circumstantiae, 2020, 40(3): 1011-1022 (in Chinese).
|
[3] |
黄超, 沈侨, 朱定, 等. 黑水虻幼虫氨基酸组成及营养价值评估[J]. 广东饲料, 2018, 27(9): 22-24.
Huang C, Shen Q, Zhu D, et al. Amino acid composition and nutritional value of larva of Hermetia illucens[J]. Guangdong Feed, 2018, 27(9): 22-24 (in Chinese).
|
[4] |
Diener S, Zurbrügg C, Tockner K. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates[J]. Waste Management & Research, 2009, 27(6): 603-610.
|
[5] |
谢雨桐, 彭凯, 胡俊茹, 等. 黑水虻在水产饲料中的应用进展[J]. 广东海洋大学学报, 2022, 42(1): 144-150. doi: 10.3969/j.issn.1673-9159.2022.01.019
Xie Y T, Peng K, Hu J R, et al. Review on application of black soldier fly (Hermetia illucens Linnaeus) in aquatic feed[J]. Journal of Guangdong Ocean University, 2022, 42(1): 144-150 (in Chinese). doi: 10.3969/j.issn.1673-9159.2022.01.019
|
[6] |
Liu X, Chen X, Wang H, et al. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly[J]. PLoS One, 2017, 12(8): e0182601. doi: 10.1371/journal.pone.0182601
|
[7] |
陈柏宇, 李楚君, 胡斌, 等. 黑水虻幼虫饲用价值[J]. 饲料工业, 2020, 41(10): 9-15.
Chen B Y, Li C J, Hu B, et al. Value of black soldier fly larvae as feed[J]. Feed Industry, 2020, 41(10): 9-15 (in Chinese).
|
[8] |
黄文庆, 黄燕华, 米海峰, 等. 3种动物蛋白质源替代鱼粉对草鱼生长性能、肌肉营养成分、消化酶活性、血清生化和抗氧化指标的影响[J]. 动物营养学报, 2019, 31(5): 2187-2200. doi: 10.3969/j.issn.1006-267x.2019.05.026
Huang W Q, Huang Y H, Mi H F, et al. Effects of fishmeal replacement by three animal protein sources on growth performance, muscle nutritional components, digestive enzyme activities and serum biochemical and antioxidant indices of Ctenopharvngodon idella[J]. Chinese Journal of Animal Nutrition, 2019, 31(5): 2187-2200 (in Chinese). doi: 10.3969/j.issn.1006-267x.2019.05.026
|
[9] |
Belghit I, Liland N S, Waagbø R, et al. Potential of insect-based diets for Atlantic salmon (Salmo salar)[J]. Aquaculture, 2018, 491: 72-81. doi: 10.1016/j.aquaculture.2018.03.016
|
[10] |
彭凯, 萧鸿发, 莫文艳, 等. 黑水虻幼虫粉替代鱼粉对加州鲈生长性能、形体指标、体成分及营养物质沉积率的影响[J]. 动物营养学报, 2021, 33(11): 6340-6348. doi: 10.3969/j.issn.1006-267x.2021.11.034
Peng K, Xiao H F, Mo W Y, et al. Effects of replacing fish meal with black soldier fly larvae meal on growth performance, physical indexes, body composition and nutrient retention rates of Micropterus salmoides[J]. Chinese Journal of Animal Nutrition, 2021, 33(11): 6340-6348 (in Chinese). doi: 10.3969/j.issn.1006-267x.2021.11.034
|
[11] |
王国霞, 陈冰, 孙育平, 等. 脱脂亮斑扁角水虻幼虫粉替代鱼粉对黄颡鱼幼鱼生长性能、营养素沉积率、血清生化指标和消化酶活性的影响[J]. 水产学报, 2020, 44(6): 987-998.
Wang G X, Chen B, Sun Y P, et al. Effects of replacing fish meal with defatted black soldier fly (Hermetia illucens) larvae meal on growth performance, nutrient retention, serum biochemical parameters and digestive enzymes activity of juvenile Pelteobagrus fulvidraco[J]. Journal of Fisheries of China, 2020, 44(6): 987-998 (in Chinese).
|
[12] |
Li S L, Ji H, Zhang B X, et al. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure[J]. Aquaculture, 2017, 477: 62-70. doi: 10.1016/j.aquaculture.2017.04.015
|
[13] |
韩星星, 叶坤, 王志勇, 等. 脱脂黑水虻虫粉替代鱼粉对大黄鱼幼鱼生长、体成分、血清生化指标及抗氧化能力的影响[J]. 中国水产科学, 2020, 27(5): 524-535.
Han X X, Ye K, Wang Z Y, et al. Effect of substitution of fish meal with defatted black soldier fly larvae meal on growth, body composition, serum biochemical parameters, and antioxidant capacity of juvenile large yellow croaker (Larimichthys crocea)[J]. Journal of Fishery Sciences of China, 2020, 27(5): 524-535 (in Chinese).
|
[14] |
Maulu S, Langi S, Hasimuna O J, et al. Recent advances in the utilization of insects as an ingredient in aquafeeds: a review[J]. Animal Nutrition, 2022, 11: 234-249.
|
[15] |
刘春, 曹际振, 张德锋, 等. 舒氏气单胞菌研究进展[J]. 动物医学进展, 2021, 42(4): 95-99. doi: 10.3969/j.issn.1007-5038.2021.04.019
Liu C, Cao J Z, Zhang D F, et al. Advance in Aeromonas schubertii[J]. Progress in Veterinary Medicine, 2021, 42(4): 95-99 (in Chinese). doi: 10.3969/j.issn.1007-5038.2021.04.019
|
[16] |
莫金凤, 姜兰, 吴灶和. 乌鳢源舒氏气单胞菌生物学特性及其药物敏感性分析[J]. 水产学报, 2016, 40(3): 484-494.
Mo J F, Jiang L, Wu Z H. Biological characteristics and drug susceptibility of Aeromonas schubertii WL-4 isolated from snakehead[J]. Journal of Fisheries of China, 2016, 40(3): 484-494 (in Chinese).
|
[17] |
胡俊茹, 何飞, 莫文艳, 等. 采食不同有机废弃物黑水虻幼虫饲料价值分析[J]. 中国饲料, 2017(15): 24-27.
Hu J R, He F, Mo W Y, et al. The feed value of black soldier fly Hermetiaillucen slarva fed with different organic wastes[J]. China Feed, 2017(15): 24-27 (in Chinese).
|
[18] |
邓希海, 黄进, 刘哲. 不同脂肪源对杂交鲟鱼生长性能、养分表观消化率、血清生化指标和抗氧化指标的影响[J]. 中国饲料, 2022(14): 61-64.
Deng X H, Huang J, Liu Z. Effects of different fat sources on growth performance, apparent nutrient digestibility, serum biochemical indexes and antioxidant indexes of hybrid sturgeon[J]. China Feed, 2022(14): 61-64 (in Chinese).
|
[19] |
Yeh S P, Chen Y N, Hsieh S L, et al. Immune response of white shrimp, Litopenaeus vannamei, after a concurrent infection with white spot syndrome virus and infectious hypodermal and hematopoietic necrosis virus[J]. Fish & Shellfish Immunology, 2009, 26(4): 582-588.
|
[20] |
王一泽, 孙敬锋, 刘军锋, 等. 养殖半滑舌鳎肝胰、中肾、鳃、头肾、脾和心中酸性磷酸酶、碱性磷酸酶和过氧化物酶的组织化学定位[J]. 中国组织化学与细胞化学杂志, 2017, 26(3): 229-234.
Wang Y Z, Sun J F, Liu J F, et al. Histochemical localization of acid phosphatase, alkaline phosphatase and peroxidase in the hepatopancreas, mid-kidney, gill, head kidney, spleen and heart of cultured Cynoglossus semilaevis Günther[J]. Chinese Journal of Histochemistry and Cytochemistry, 2017, 26(3): 229-234 (in Chinese).
|
[21] |
Hender A, Siddik M, Howieson J, et al. Black soldier fly, Hermetia illucens as an alternative to fishmeal protein and fish oil: impact on growth, immune response, mucosal barrier status, and flesh quality of juvenile barramundi, Lates calcarifer (Bloch, 1790)[J]. Biology, 2021, 10(6): 505. doi: 10.3390/biology10060505
|
[22] |
Sankian Z, Khosravi S, Kim Y O, et al. Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherzeri) juveniles[J]. Aquaculture, 2018, 496: 79-87. doi: 10.1016/j.aquaculture.2018.07.012
|
[23] |
胡晓伟, 上官静波, 黎中宝, 等. 饲料中添加壳寡糖对花鲈(Lateolabrax japonicus)幼鱼的生长、消化和血清生化指标的影响[J]. 海洋学报, 2018, 40(2): 69-76.
Hu X W, Shangguang J B, Li Z B, et al. Effects of dietary chitosan oligosaccharide on the performance, digestion and serum biochemical indexes of the juvenile Japanese seabass (Lateolabrax japonicus)[J]. Haiyang Xuebao, 2018, 40(2): 69-76 (in Chinese).
|
[24] |
Tang W H W, Kitai T, Hazen S L. Gut microbiota in cardiovascular health and disease[J]. Circulation Research, 2017, 120(7): 1183-1196. doi: 10.1161/CIRCRESAHA.117.309715
|
[25] |
Wang A R, Ran C, Ringø E, et al. Progress in fish gastrointestinal microbiota research[J]. Reviews in Aquaculture, 2018, 10(3): 626-640. doi: 10.1111/raq.12191
|
[26] |
Ray A K, Roy T, Mondal S, et al. Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps[J]. Aquaculture Research, 2010, 41(10): 1462-1469.
|
[27] |
李鹏, 端青, 宋立华. 衣原体最新分类体系与分类鉴定方法研究进展[J]. 中国人兽共患病学报, 2014, 30(12): 1262-1266. doi: 10.3969/cjz.j.issn.1002-2694.2014.12.019
Li P, Duan Q, Song L H. Recent advances on chlamydial taxonomy and identification[J]. Chinese Journal of Zoonoses, 2014, 30(12): 1262-1266 (in Chinese). doi: 10.3969/cjz.j.issn.1002-2694.2014.12.019
|
[28] |
饶秋华, 刘洋, 黎露, 等. 大黄鱼内脏白点病的病原分离鉴定及致病性[J]. 福建农林大学学报(自然科学版), 2022, 51(6): 800-808.
Rao Q H, Liu Y, Li L, et al. Isolation, identification and pathogenicity of the pathogen of visceral white spot disease of Larimichthys crocea[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2022, 51(6): 800-808 (in Chinese).
|
[29] |
许斌福, 陈秀锦, 池洪树, 等. 大黄鱼变形假单胞菌的遗传学和血清学聚类特征初步分析[J]. 福建农业学报, 2022, 37(9): 1109-1116.
Xu B F, Chen X J, Chi H S, et al. A preliminary study on genetic and serological clustering of pathogenic Pseudomonas plecoglossicida in Larimichthys crocea[J]. Fujian Journal of Agricultural Sciences, 2022, 37(9): 1109-1116 (in Chinese).
|
[30] |
Shin N R, Whon T W, Bae J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015, 33(9): 496-503. doi: 10.1016/j.tibtech.2015.06.011
|
[31] |
Hu Y J, Huang Y H, Tang T, et al. Effect of partial black soldier fly (Hermetia illucens L.) larvae meal replacement of fish meal in practical diets on the growth, digestive enzyme and related gene expression for rice field eel (Monopterus albus)[J]. Aquaculture Reports, 2020, 17: 100345. doi: 10.1016/j.aqrep.2020.100345
|
[32] |
蔡雪峰, 罗琳, 战文斌, 等. 壳寡糖对虹鳟幼鱼肠道菌群影响的研究[J]. 中国海洋大学学报, 2006, 36(4): 606-610.
Cai X F, Luo L, Zhan W B, et al. Effects of chitooligosaccharides on intestinal bacterial flora of juvenile rainbow trout[J]. Periodical of Ocean University of China, 2006, 36(4): 606-610 (in Chinese).
|
[33] |
许丰孟. 酶解黑水虻虫浆对大口黑鲈生长、免疫和肠道菌群的影响[D]. 广州: 华南农业大学, 2022.
Xu F M. Effects of dietary zymolytic black soldier fly (Hermetia illucens) pulp on growth performance, immune indexes and intestinal flora of largemouth bass (Micropterus salmoides)[D]. Guangzhou: South China Agricultural University, 2022 (in Chinese).
|
[34] |
张文阁. 月桂酸体外抑菌作用机理及对沙门氏菌感染小鼠肠道组织的影响[D]. 南京: 南京农业大学, 2020.
Zhang W G. Inhibitory mechanism of lauric acid in vitro and its effect on intestinal tissue of mice infected with Salmonella[D]. Nanjing: Nanjing Agricultural University, 2020 (in Chinese).
|
[35] |
Feng P F, He J Z, Lv M, et al. Effect of dietary Tenebrio molitor protein on growth performance and immunological parameters in Macrobrachium rosenbergii[J]. Aquaculture, 2019, 511: 734247. doi: 10.1016/j.aquaculture.2019.734247
|
[36] |
Gopalakannan A, Arul V. Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds[J]. Aquaculture, 2006, 255(1-4): 179-187. doi: 10.1016/j.aquaculture.2006.01.012
|