• ISSN 1000-0615
  • CN 31-1283/S
Volume 45 Issue 10
Oct.  2021
Article Contents
Turn off MathJax

Citation:

Effects of three kinds of lactic acid bacteria on growth, antioxidant and immune functions of Channa argus

  • Corresponding author: WANG Guiqin, wgqjlau@aliyun.com
  • Received Date: 2020-09-14
    Accepted Date: 2021-04-01
    Available Online: 2021-08-30
  • In order to study the effects of lactic acid bacteria (LAB) on the growth, antioxidative status and immunity of Channa argus, 360 C. argus with an initial weight of (3.43 ± 0.05) g were selected and randomly divided into 4 groups. Each group was set up with 3 replicates, each with 30 C. argus. They were fed with basic feed and test feed supplemented with 108 CFU Lactococcus lactis L21 (L21 group), Lactobacillus plantarum W21 (W21 group), and Enterococcus faecalis L2 (L2 group). After 8 weeks, we collected the serum, liver, spleen, kidney and intestinal tissues to determine related indicators and genes expression. The results showed that compared with the control group, the three LAB added to the feed could significantly increase the average weight gain rate (AWGR), specific growth rate (SGR) and feed efficiency rate (FER) of C. argus, and the L21 group was significantly higher than other groups. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and alkaline phosphatase (AKP) in the L2 group were significantly higher than control group, the lysozyme (LZM) activity of the W21 and L2 groups was significantly higher than that of the control and L21 groups, and the immunoglobulin M (IgM) activity of each group was not significant. The genes expression levels of IL-1β, IL-8, IL-10 and TNF-α in various tissues all increased to varying degrees, and LAB could significantly promote the expression of immune-related genes in the intestine. Research shows that under the experimental conditions, L. lactis L21 had the best application effect in C. argus, and it could improve the growth, and immune function of C. argus.
  • 加载中
  • [1] Nayak S K. Probiotics and immunity: a fish perspective[J]. Fish & Shellfish Immunology, 2010, 29(1): 2-14.
    [2] Alard J, Peucelle V, Boutillier D, et al. New probiotic strains for inflammatory bowel disease management identified by combining in vitro and in vivo approaches[J]. Beneficial Microbes, 2018, 9(2): 317-331. doi: 10.3920/BM2017.0097
    [3] Zuo Z H, Shang B J, Shao Y C, et al. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2019, 86: 160-168.
    [4] 宫魁, 王宝杰, 刘梅, 等. 乳酸菌及其代谢产物对刺参幼体肠道菌群和非特异性免疫的影响[J]. 海洋科学, 2013, 37(7): 7-12.Gong K, Wang B J, Liu M, et al. The influence of lactic acid bacteria and metabolites on intestinal microflora and nonspecific immunity of juvenile sea cucumber (Apostichopus japonicus)[J]. Marine Sciences, 2013, 37(7): 7-12(in Chinese).
    [5] 刘梦, 王苓, 田相利, 等. 三种益生菌及其复合菌对凡纳滨对虾生长和血清非特异性免疫的影响[J]. 中国海洋大学学报, 2017, 47(S1): 35-41.Liu M, Wang L, Tian X L, et al. Effects of three probiotics and their complexes on growth performance and serum non-specific immunity of Litopenaeus vannamei[J]. Periodical of Ocean University of China, 2017, 47(S1): 35-41(in Chinese).
    [6] 何伟聪, 董晓慧, 谭北平, 等. 益生菌对军曹鱼幼鱼生长性能、消化酶和免疫酶活性的影响[J]. 动物营养学报, 2015, 27(12): 3821-3830. doi: 10.3969/j.issn.1006-267x.2015.12.022He W C, Dong X H, Tan B P, et al. Effects of probiotics on growth performance, digestive enzyme and immune enzyme activities of juvenile cobia (Rachycentron canadum)[J]. Chinese Journal of Animal Nutrition, 2015, 27(12): 3821-3830(in Chinese). doi: 10.3969/j.issn.1006-267x.2015.12.022
    [7] 许禔森. 短乳酸杆菌对草鱼幼鱼养殖水体和肠道菌群的影响[J]. 德州学院学报, 2008, 24(2): 60-63. doi: 10.3969/j.issn.1004-9444.2008.02.018Xu T S. Effects of Lactobacillus brevie on the microflora in water and larvae guts of grass carp[J]. Journal of Dezhou University, 2008, 24(2): 60-63(in Chinese). doi: 10.3969/j.issn.1004-9444.2008.02.018
    [8] 赵倩, 赵凤梅, 陈玉春, 等. 乳酸菌对草鱼鱼种生长指标及免疫指标的影响[J]. 饲料与畜牧, 2012(12): 45-47.Zhao Q, Zhao F M, Chen Y C, et al. Effects of lactic acid bacteria on growth indicators and immune indexes of Ctenopharyngodon idellus fingerlings[J]. Feed and Animal Husbandry, 2012(12): 45-47(in Chinese).
    [9] 周晓波, 黄燕华, 曹俊明, 等. 5种乳酸菌对罗非鱼生长性能、体成分、血清生化指标及肠道菌群的影响[J]. 动物营养学报, 2014, 26(7): 2009-2017. doi: 10.3969/j.issn.1006-267x.2014.07.037Zhou X B, Huang Y H, Cao J M, et al. Effects of 5 kinds of Lactobacillus on growth performance, body composition, serum biochemical indices and intestinal microflora of tilapia (Oreochromis niloticus×O. aureu)[J]. Chinese Journal of Animal Nutrition, 2014, 26(7): 2009-2017(in Chinese). doi: 10.3969/j.issn.1006-267x.2014.07.037
    [10] 张新铖, 陈昆慈, 朱新平. 乌鳢、斑鳢及杂交种养殖研究现状[J]. 广东农业科学, 2011, 38(22): 132-134. doi: 10.3969/j.issn.1004-874X.2011.22.044Zhang X C, Chen K C, Zhu X P. Research progress on Channa argus, Channa maculate and hybrid aquaculture[J]. Guangdong Agricultural Sciences, 2011, 38(22): 132-134(in Chinese). doi: 10.3969/j.issn.1004-874X.2011.22.044
    [11] Twibell R G, Wilson R P. Nutrient requirements and feeding of finfish for aquaculture[J]. Aquaculture, 2002, 214(1-4): 419-420. doi: 10.1016/S0044-8486(02)00345-9
    [12] Aliyu-Paiko M, Hashim R, Shu-Chien A C. Influence of dietary lipid/protein ratio on survival, growth, body indices and digestive lipase activity in snakehead (Channa striatus, Bloch 1793) fry reared in re-circulating water system[J]. Aquaculture Nutrition, 2010, 16(5): 466-474. doi: 10.1111/j.1365-2095.2009.00683.x
    [13] 杨四秀, 蒋艾青. 斑鳢的含肉率及肌肉营养成分分析[J]. 河北渔业, 2007(12): 10-12, 35. doi: 10.3969/j.issn.1004-6755.2007.12.006Yang S X, Jiang A Q. Analysis on muscle content and its nutrient components of Channa maculata[J]. Hebei Fisheries, 2007(12): 10-12, 35(in Chinese). doi: 10.3969/j.issn.1004-6755.2007.12.006
    [14] 邹礼根, 冯晓宇, 王宇希, 等. 杂交鳢(斑鳢♀×乌鳢♂)与乌鳢肌肉品质比较研究[J]. 上海海洋大学学报, 2011, 20(2): 303-307.Zou L G, Feng X Y, Wang Y X, et al. Comparative study on flesh quality of hybrid snakehead (Channa maculate♀×Channa argus♂) and Channa argus[J]. Journal of Shanghai Ocean University, 2011, 20(2): 303-307(in Chinese).
    [15] 罗青, 陈昆慈, 赵建, 等. 乌鳢、斑鳢及其杂交F1代肌肉营养成分和含肉率的比较分析[J]. 大连海洋大学学报, 2015, 30(2): 175-180. doi: 10.3969/J.ISSN.2095-1388.2015.02.012Luo Q, Chen K C, Zhao J, et al. Dressed rates and muscular nutrients in northern snakehead Channa argus, Taiwan snakehead C. maculata and their hybrids[J]. Journal of Dalian Ocean University, 2015, 30(2): 175-180(in Chinese). doi: 10.3969/J.ISSN.2095-1388.2015.02.012
    [16] 单晓枫, 张冬星, 康元环, 等. 长春市售乌鳢携带嗜水气单胞菌情况调查[J]. 中国兽医杂志, 2018, 54(1): 95-97.Shan X F, Zhang D X, Kang Y H, et al. Aeromonas hydrophila in northern snakehead (Channa argus) commercially available from Changchun: a molecular epidemiological study[J]. Chinese Journal of Veterinary Medicine, 2018, 54(1): 95-97(in Chinese).
    [17] Son V M, Chang C C, Wu M C, et al. Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides[J]. Fish & Shellfish Immunology, 2009, 26(5): 691-698.
    [18] Byun J W, Park S C, Benno Y, et al. Probiotic effect of Lactobacillus sp. DS-12 in flounder (Paralichthys olivaceus)[J]. The Journal of General and Applied Microbiology, 1997, 43(5): 305-308. doi: 10.2323/jgam.43.305
    [19] 陈营, 王福强, 邵占涛, 等. 乳酸菌对牙鲆稚鱼养殖水体和肠道菌群的影响[J]. 海洋水产研究, 2006, 27(3): 37-41.Chen Y, Wang F Q, Shao Z T, et al. Effects of lactic acid bacteria on the microflora in water and larvae guts of Japanese flounder (Paralichthys olivaceus)[J]. Marine Fisheries Research, 2006, 27(3): 37-41(in Chinese).
    [20] Suzer C, Coban D, Kamaci H O, et al. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: Effects on growth performance and digestive enzyme activities[J]. Aquaculture, 2008, 280(1-4): 140-145. doi: 10.1016/j.aquaculture.2008.04.020
    [21] 尹军霞, 陈瑛, 孟丽丽. 益生菌剂对鲫鱼肠道菌群影响的初步研究[J]. 水产科学, 2007, 26(11): 610-612. doi: 10.3969/j.issn.1003-1111.2007.11.006Yin J X, Chen Y, Meng L L. The influences of probiotics on intestinal microflora in crucian carp (Carassius auratus)[J]. Fisheries Science, 2007, 26(11): 610-612(in Chinese). doi: 10.3969/j.issn.1003-1111.2007.11.006
    [22] Dawood M A O, Koshio S, Ishikawa M, et al. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major[J]. Fish & Shellfish Immunology, 2016, 49: 275-285.
    [23] Beck B R, Kim D, Jeon J, et al. The effects of combined dietary probiotics Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 on innate immunity and disease resistance in olive flounder (Paralichthys olivaceus)[J]. Fish & Shellfish Immunology, 2015, 42(1): 177-183.
    [24] 孙全贵, 龙子, 张晓迪, 等. 抗氧化系统研究新进展[J]. 现代生物医学进展, 2016, 16(11): 2197-2200, 2190.Sun Q G, Long Z, Zhang X D, et al. Novel progress in antioxidant system[J]. Progress in Modern Biomedicine, 2016, 16(11): 2197-2200, 2190(in Chinese).
    [25] 白明, 孟祥晨. 益生菌抗氧化活性及菌体抗氧化相关成分的分析[J]. 食品与发酵工业, 2009, 35(5): 6-11.Bai M, Meng X C. Antioxidative activity of probiotics and their internal correlative antioxidative components[J]. Food and Fermentation Industries, 2009, 35(5): 6-11(in Chinese).
    [26] Xie J, Liu B, Zhou Q L, et al. Effects of anthraquinone extract from rhubarb Rheum officinale Bail on the crowding stress response and growth of common carp Cyprinus carpio var. Jian[J]. Aquaculture, 2008, 281(1-4): 5-11. doi: 10.1016/j.aquaculture.2008.03.038
    [27] 丁丽丽, 吕欣然, 高永悦, 等. 鱼肠道中抗氧化活性乳酸菌的筛选及鉴定[J]. 食品科学, 2021, 42(10): 127-132.Ding L L, Lu X R, Gao Y Y, et al. Screening for and identification of lactic acid bacteria with antioxidant activity from the intestinal tract of fish[J]. Food Science, 2021, 42(10): 127-132(in Chinese).
    [28] 黄燕华, 周晓波, 王国霞, 等. 5种乳酸菌对奥尼罗非鱼免疫和抗病力的影响[J]. 水产科学, 2014, 33(10): 601-605. doi: 10.3969/j.issn.1003-1111.2014.10.001Huang Y H, Zhou X B, Wang G X, et al. Effects of Lactobacillus on immunity and disease resistance of tilapia (Oreochromis niloticus×O. aureu)[J]. Fisheries Science, 2014, 33(10): 601-605(in Chinese). doi: 10.3969/j.issn.1003-1111.2014.10.001
    [29] Kader M A, Bulbul M, Koshio S, et al. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major[J]. Aquaculture, 2012, 350-353: 109-116. doi: 10.1016/j.aquaculture.2012.04.009
    [30] Aly S M, Ahmed Y A G, Ghareeb A A A, et al. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections[J]. Fish & Shellfish Immunology, 2008, 25(1-2): 128-136.
    [31] Pourgholam M A, Khara H, Safari R, et al. Dietary administration of Lactobacillus plantarum enhanced growth performance and innate immune response of Siberian sturgeon, Acipenser baerii[J]. Probiotics & Antimicrobial Proteins, 2016, 8(1): 1-7.
    [32] Jami M J, Kenari A A, Paknejad H, et al. Effects of dietary b-glucan, mannan oligosaccharide, Lactobacillus plantarum and their combinations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877)[J]. Fish & Shellfish Immunology, 2019, 91: 202-208.
    [33] Wang Y B, Tian Z Q, Yao J T, et al. Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response[J]. Aquaculture, 2008, 277(3-4): 203-207. doi: 10.1016/j.aquaculture.2008.03.007
    [34] Merrifield D L, Dimitroglou A, Bradley G, et al. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) I. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria[J]. Aquaculture Nutrition, 2010, 16(5): 504-510. doi: 10.1111/j.1365-2095.2009.00689.x
    [35] Piccolo G, Bovera F, Lombardi P, et al. Effect of Lactobacillus plantarum on growth performance and hematological traits of European sea bass (Dicentrarchus labrax)[J]. Aquaculture International, 2015, 23(4): 1025-1032. doi: 10.1007/s10499-014-9861-8
    [36] Xia Y, Lu M X, Chen G, et al. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus[J]. Fish & Shellfish Immunology, 2018, 76: 368-379.
    [37] Moore K W, de Waal M R, Coffman R L, et al. Interleukin-10 and the interleukin-10 receptor[J]. Annual Review of Immunology, 2001, 19(1): 683-765. doi: 10.1146/annurev.immunol.19.1.683
    [38] Palócz O, Pászti-Gere E, Gálfi P, et al. Chlorogenic acid combined with Lactobacillus plantarum 2142 reduced LPS-Induced intestinal inflammation and oxidative stress in IPEC-J2 cells[J]. PLoS One, 2016, 11(11): e0166642. doi: 10.1371/journal.pone.0166642
    [39] Ren P F, Xu L, Yang Y L, et al. Lactobacillus planarum subsp. plantarum JCM 1149 vs. Aeromonas hydrophila NJ-1 in the anterior intestine and posterior intestine of hybrid tilapia Oreochromis niloticus♀×Oreochromis aureus♂: an ex vivo study[J]. Fish & Shellfish Immunology, 2013, 35(1): 146-153.
    [40] He S X, Liu W S, Zhou Z G, et al. Evaluation of probiotic strain Bacillus subtilis C-3102 as a feed supplement for koi carp (Cyprinus carpio)[J]. Journal of Aquaculture Research & Development, 2011, S1: 005.
    [41] Picchietti S, Fausto A M, Randelli E, et al. Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.)[J]. Fish & Shellfish Immunology, 2009, 26(3): 368-376.
  • Relative Articles

    [1] XU Chenyuan, CHI Cheng, ZHENG Xiaochuan, LIU Jiadai, ZHANG Caiyan, LIU Wenbin, LIU Yanling, YAN Yanan, HUANG Jian, WANG Sheng. Effects of fermented feed on the growth performance, oxidation resistance, immune function and protein metabolism of juvenile Chinese mitten crabs (Eriocheir sinensis). Journal of fisheries of china, 2019, 43(10): 2209-2217.  doi: 10.11964/jfc.20190811919
    [2] LI Huifeng, LI Erchao, XU Chang, ZHOU Li, CHEN Liqiao. Effects of silymarin on growth, activities of immune-related enzymes, hepatopancreas histology and intestinal microbiota of the Pacific white shrimp (Litopenaeus vannamei) at low salinity. Journal of fisheries of china, 2021, 45(1): 98-114.  doi: 10.11964/jfc.20200612291
    [3] LI Yanhong, ZHANG Feifei, SHI Yanping, LIAO Maowen, LIU Han, LI Lin, WANG Yongjia, WU Yinglong. Effects of two kinds of polysaccharides on growth, serum antioxidant indices and tissue cadmium accumulation of Schizothorax prenanti. Journal of fisheries of china, 2021, 45(4): 588-599.  doi: 10.11964/jfc.20191012013
    [4] KONG Chun, HUA Xueming, YANG Lu, LIU Tao, YANG Jingfeng, WANG Tan, WANG Gang, WU Zhao, SHI Yonghai, SHUI Chun, SU Meiying. Nutritional physiological effects of soybean meal substituting for fish meal in the feed of obscure puffer (Takifugu fasciatus) and its relationship with soybean antigenic proteins. Journal of fisheries of china, 2017, 41(5): 734-745.  doi: 10.11964/jfc.20160810517
    [5] ZHU Jinyu, HAN Bei, BU Hongyi, HU Juntao, ZHANG Xin, LIU Lingjun, MIAO Shuyan. Effects of dietary soybean meal on the intestinal microbiota and metabolic enzymes activities of microbial amino acids of Channa argus. Journal of fisheries of china, 2020, 44(4): 642-650.  doi: 10.11964/jfc.20181211583
    [6] CAI Qiuxing, WU Yanyan, LI Laihao, YANG Xianqing, ZHAO Yongqiang, WANG Yueqi. Study on antioxidant enzymes and exopolysaccharides of lactic acid bacteria separated from salt-dried fish products. Journal of fisheries of china, 2017, 41(6): 952-961.  doi: 10.11964/jfc.20170310746
    [7] YANG Yuanyuan, WANG Nannan, CAO Qing, LU Chengping, LIU Yongjie. Isolation and probiotic properties of lactic acid bacteria from the gut of crucian carp (Carassius auratus). Journal of fisheries of china, 2018, 42(10): 1596-1605.  doi: 10.11964/jfc.20171011017
    [8] LIN Huimin, YUAN Ning, LI Yingjie, DENG Shanggui, ZHANG Bin, HUO Jiancong. Effect of ferrous chelate Trichiurus lepturus protein on the immune characteristics of Misgurnus anguillicaudatus. Journal of fisheries of china, 2018, 42(6): 968-974.  doi: 10.11964/jfc.20170710903
    [9] HAN Xiujie, LI Baoshan, WANG Jiying, WANG Lili, WANG Yaping, WANG Chengqiang, JIANG Lisheng, SUN Yongzhi, HAO Tiantian. Optimum dietary valine requirement of juvenile sea cucumber Apostichopus japonicus. Journal of fisheries of china, 2019, 43(3): 628-638.  doi: 10.11964/jfc.20180111124
    [10] XU Xiaorong, SHI Peng, XU Jilin, LIAO Kai, RAN Zhaoshou, YAN Xiaojun. Cloning and expression analysis of the 2-CRD galectin gene (ScGL) from Sinonovacula constricta. Journal of fisheries of china, 2020, 44(8): 1264-1274.  doi: 10.11964/jfc.20190611850
    [11] YANG Lixiang, XIANG Xiao, ZHOU Xinghua, CHEN Jian, LUO Li. Effects of riboflavin on growth performance, body composition, immunity and antioxidant capacity of Schizothorax prenanti. Journal of fisheries of china, 2020, 44(5): 836-844.  doi: 10.11964/jfc.20190511780
    [12] LIU Honghan, JIANG Yuting, FAN Meihua, WANG Rixin, LIAO Zhi. Antimicrobial activity and proteomic analysis ofBoleophthalmus pectinirostris skin mucus. Journal of fisheries of china, 2019, 43(5): 1271-1287.  doi: 10.11964/jfc.20180511293
    [13] DUAN Xiaoshan, ZHANG Zhaohui, YING Rui, ZHAO Tengfei, LIU Ao, LI Bafang, ZHAO Xue, HOU Hu. Antioxidant and protective effect of flavonoids from Salicornia bigelovii against CCl4-induced acute hepatic injury in mice. Journal of fisheries of china, 2017, 41(12): 1946-1955.  doi: 10.11964/jfc.20161110612
    [14] TAO Jing, DING Dongge, CHEN Yin, WANG Bin, WANG Jiabin, ZHAO Yuqin, HUO Jiancong. Preparation and bioactivity evaluation of high Fischer ratio oligo-peptide from Trichiurus japonicus. Journal of fisheries of china, 2018, 42(10): 1648-1660.  doi: 10.11964/jfc.20170710902
    [15] LI Bing, ZHANG Muzi, LI Ming, YUAN Lixia, WANG Rixin. Effect of acute ammonia toxicity on genes involved in antioxidant and inflammation in head kidney macrophage of Pelteobagrus fulvidraco. Journal of fisheries of china, 2018, 42(12): 1889-1895.  doi: 10.11964/jfc.20170910969
    [16] YAO Jingting, KONG Chun, HUA Xueming, SHUI Chun, SHI Yonghai. Effects of supplemental hydrolysable tannin on feeding preference, nutrition digestion and antioxidant ability of obscure puffer (Takifugu fasciatus). Journal of fisheries of china, 2019, 43(6): 1449-1462.  doi: 10.11964/jfc.20181211580
    [17] ZHANG Gan, ZHANG Ruiqiang, LINGHU Kechuan, ZHOU Weiren, JIANG Ying, ZHOU Yanmin. Effects of oligo-chitosan supplementation on growth performance, body composition, non-specific immunity, and antioxidant capacity of Eriocheir sinensis. Journal of fisheries of china, 2020, 44(8): 1340-1348.  doi: 10.11964/jfc.20190411758
    [18] ZHANG Tiantian, YIN Haicheng, HUANG Wei. Protective effect of Bacillus subtilis peptidoglycan on β-conglycinin-induced intestinal epithelial cells damage of juvenile carp (Cyprinus carpio). Journal of fisheries of china, 2018, 42(4): 495-502.  doi: 10.11964/jfc.20170310744
    [19] XU Zhen, YANG Hang, LIANG Gaoyang, GAO Bowei, LI Xiaoqin, LENG Xiangjun. Effects of dietary baicalein on growth, serum anti-oxidation indicators and flesh quality of Ctenopharyngodon idella. Journal of fisheries of china, 2019, 43(11): 2383-2393.  doi: 10.11964/jfc.20181011485
    [20] WANG Shuang, LI Zhanfu, LI Hong, LI Xuelian, LEI Denghua, ZHU Chengke, LIN Shimei, CHEN Yongjun, LUO Li. Dietary protein requirement of juvenile giant salamander (Andrias davidianus). Journal of fisheries of china, 2020, 44(1): 99-110.  doi: 10.11964/jfc.20181111533
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3) / Tables(3)

Article views(452) PDF downloads(15) Cited by()

Related
Proportional views

Effects of three kinds of lactic acid bacteria on growth, antioxidant and immune functions of Channa argus

    Corresponding author: WANG Guiqin, wgqjlau@aliyun.com
  • 1. College of Life Science, Jilin Agricultural University, Changchun   130118, China
  • 2. Laboratory of Animal Production and Quality Security, Ministry of EducationJilin Agricultural University, Changchun 130118, China
  • 3. Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
  • 4. Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China

Abstract: In order to study the effects of lactic acid bacteria (LAB) on the growth, antioxidative status and immunity of Channa argus, 360 C. argus with an initial weight of (3.43 ± 0.05) g were selected and randomly divided into 4 groups. Each group was set up with 3 replicates, each with 30 C. argus. They were fed with basic feed and test feed supplemented with 108 CFU Lactococcus lactis L21 (L21 group), Lactobacillus plantarum W21 (W21 group), and Enterococcus faecalis L2 (L2 group). After 8 weeks, we collected the serum, liver, spleen, kidney and intestinal tissues to determine related indicators and genes expression. The results showed that compared with the control group, the three LAB added to the feed could significantly increase the average weight gain rate (AWGR), specific growth rate (SGR) and feed efficiency rate (FER) of C. argus, and the L21 group was significantly higher than other groups. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and alkaline phosphatase (AKP) in the L2 group were significantly higher than control group, the lysozyme (LZM) activity of the W21 and L2 groups was significantly higher than that of the control and L21 groups, and the immunoglobulin M (IgM) activity of each group was not significant. The genes expression levels of IL-1β, IL-8, IL-10 and TNF-α in various tissues all increased to varying degrees, and LAB could significantly promote the expression of immune-related genes in the intestine. Research shows that under the experimental conditions, L. lactis L21 had the best application effect in C. argus, and it could improve the growth, and immune function of C. argus.

  • 益生菌是一种活的微生物饲料补充剂,可以改善肠道微生物平衡,从而促进生长和免疫系统,刺激酶活性,增强抗病能力[1]。通过添加益生菌来提高鱼类的免疫功能,促进营养吸收,抑制有害微生物生长的方法受到很多研究者的关注,已成为提高机体抗病能力的重要途径。乳酸菌(lactic acid bacteria,LAB)为革兰氏阳性,可以分解糖类产生乳酸,厌氧或兼性厌氧生长,耐酸,在pH 3.0~4.5时仍可生长,适应于胃肠的酸性环境[2],且作为重要的益生菌已经广泛应用于食品、医药、轻工业和畜牧业等领域。乳酸菌作为人和动物胃肠道中的优势菌群,其发酵产生的有机酸、特殊酶系、细菌表面成分等物质具有一定生理功能,可刺激组织发育,对机体的营养状态、生理功能、细胞感染、药物效应、毒性反应、免疫反应、肿瘤发生、衰老过程和应激反应等产生作用,使其在鱼类、虾蟹类及软体动物养殖中也得以广泛的应用[3-5],近年来乳酸菌在水产动物上的研究很多,在对军曹鱼(Rachycentron canadum)[6]、草鱼(Ctenopharyngodon idella)[7, 8]、奥尼罗非鱼(Oreochromis niloticus×O.aureu)[9]等的研究中均证实乳酸菌可提高鱼类的生长性能及免疫力。乌鳢(Channa argus)为肉食性鱼类,是中国主要的鳢科鱼类养殖品种[10],因其生长快、生命力强、肉味鲜美,且具有祛瘀活血、怯寒调养、生肌补血等多种药理功效,从而具有较高的经济价值与营养价值,被喻为高投入、高产出、高效益的养殖品种[11-13]。但是随着鱼类养殖业的发展,在高密度养殖模式下,投喂量的加大、投喂冰鲜杂鱼和高蛋白配合饲料造成的水质恶化导致乌鳢生长发育缓慢,免疫力下降,同时并发各种疾病,饲料效率和水产品质量降低,严重阻碍产业健康发展[14-16],因此,寻求一种绿色安全高效的饲料添加剂已迫在眉睫。目前关于乳酸菌的研究多为单一添加的方式,很难比较出不同种类乳酸菌间的差异,因此本实验通过比较3种不同乳酸菌对乌鳢生长、抗氧化及免疫功能的影响,筛选出适宜乌鳢养殖的乳酸菌,为乳酸菌在实际生产中的应用提供理论基础。

1.   材料与方法
  • 实验选用3种乳酸菌,乳酸乳球菌L21 (lactococcus lactis L21)、植物乳杆菌W21 (Lactobacillus plantarum W21)、粪肠球菌L2 (Enterococcus faecalis L2)均为鱼源,由吉林农业大学预防兽医实验室提供。

  • 基础饲料组成及营养成分见表1。以基础饲料作为对照组,使用海藻酸钠将L. lactis L21、L. plantarum W21、E. faecalis L2包被配置成为乳酸菌数量为108 CFU/g的3种实验饲料,37 °C恒温箱烘干后,置于−20 °C冰柜中保存备用。

    项目
    item
    乳酸菌 LAB
    对照组 controlL21组W21组L2组
    原料/% ingredient
    鱼粉 fish meal 42.00 42.00 42.00 42.00
    玉米蛋白粉 corn protein powder 26.00 26.00 26.00 26.00
    麦麸 wheat bran 5.00 5.00 5.00 5.00
    玉米油 corn oil 4.00 4.00 4.00 4.00
    面粉 flour 14.00 14.00 14.00 14.00
    糊精 dextrin 5.00 5.00 5.00 5.00
    复合预混料1,2 compound premix 2.00 2.00 2.00 2.00
    磷酸二氢钙 calcium phosphate 1.50 1.50 1.50 1.50
    氯化胆碱 choline chloride 0.50 0.50 0.50 0.50
    营养成分 nutrient content
    粗蛋白质/% crude protein 45.83 45.83 45.83 45.83
    粗脂肪/% crude lipid 7.8 7.8 7.8 7.8
    粗灰分/% crude Ash 11.07 11.07 11.07 11.07
    总能/(MJ/kg) total energy 17.63 17.63 17.63 17.63
    注:1.维生素预混料向每千克饲料提供为VD3 2 000 IU、VE 50 IU、VK 1 mg、VB1 1 mg、VB2 6 mg、VB6 (吡哆醇) 5 mg、胆碱1 000 mg、VB12 0.02 mg、烟酸10 mg、VA 2 500 IU、生物素0.14 mg、D-泛酸钙20 mg、叶酸1 mg、VC 50 mg;2.矿物质预混料向每千克饲料提供为硫酸亚铁13 mg、硫酸锌60 mg、氯化钠1 200 mg、硫酸锰32 mg、硫酸铜7 mg、碘化钾8 mg
    Notes:1. Vitamin premix provided per kilogram of feed: VD3 2 000 IU, VE 50 IU, VK 1 mg, VB1 1 mg, VB2 6 mg, VB6 (pyridoxine) 5 mg, choline
    1 000 mg, VB12 0.02 mg, niacin 10 mg, VA 2 500 IU, biotin 0.14 mg, D-calcium pantothenate 20 mg, folic acid 1 mg, VC 50 mg; 2. mineral premix provides per kilogram of feed: FeSO4 13 mg, ZnSO4 60 mg, NaCl 1 200 mg, MnSO4 32 mg, CuSO4 7 mg, KI 8 mg

    Table 1.  Basic feed formula and nutrient content

  • 实验所用乌鳢购买自辽宁刘二堡渔场。在吉林农业大学水产养殖基地控温单循环养殖系统中进行为期8周的饲养实验,在实验前于水族箱中暂养15 d,并进行驯化。挑选身体健康,体型及规格一致,体质量为(3.43 ± 0.05) g的乌鳢360尾,并随机分配到12个水族箱内,随机分成4组,分别为对照组、L21组、W21组及L2组,每组3个重复,每个重复30尾。对照组饲喂基础饲料,另外3组分别投喂配置好的3种乳酸菌饲料。水族箱水温设定25~29 °C,溶解氧大于5 mg/L,氨氮小于0.02 mg/L,pH值7.1 ± 0.1。日投饵率为平均体质量的3%~4%,每日饱食投喂2次(9:00;16:00),1 h后检查水族箱内残饵情况并用虹吸法吸出沉积的残饵,根据残饵情况调整投喂量。

  • 养殖实验结束后,将实验鱼停食24 h,称体质量、肝脏及内脏重,并测量体长,然后进行尾静脉取血,置于4 °C冰箱中静置2 h后,5 000 r/min离心10 min,取血清后进行分装置于−80 °C冰箱中保存,无菌采集肝脏、脾脏、肾脏以及肠道后置于−80 °C冰箱中保存待测。

  • 根据乌鳢初始体质量、终末体质量以及摄食量计算平均增重率、特定生长率、饲料效率、肥满度、肝体比、脏体比。计算公式如下:

    成活率(survival rate,SR,%)=Nt/N0×100%;

    平均增重率(average weight gain rate,AWGR,%)=(WtW0)/W0×100%;

    特定生长率(specific growth rate,SGR,%/d)=(lnWt− lnW0)/t×100%;

    饲料效率(feed efficiency rate,FER,%)=(WtW0)/Wf×100%;

    肥满度(condition factor,CF,g/cm3)=Wt/L3

    肝体比(hepatosomatic index,HSI,%)=100%×Wh/Wt

    脏体比(viscerosomatic index,VSI,%)=100%×Wv/Wt

    式中,Nt为终末尾数,N0为初始尾数,Wt为终末体质量(g),W0为初始体质量(g),t为实验天数(d),Wf为摄入饲料量(g),Wh表示肝脏重(g/尾),Wv表示内脏重(g/尾),L为鱼体长(cm)。

  • 血清溶菌酶(lysozyme,LZM)、碱性磷酸酶 (alkaline phosphatase,AKP)、超氧化物歧化酶 (superoxide dismutase,SOD)、过氧化氢酶 (catalase,CAT)、谷胱甘肽 (glutathione,GSH)及免疫球蛋白M (immunoglobulin M,IgM)活性使用南京建成生物工程研究所生产的试剂盒进行检测,检测方法依照试剂盒说明书进行操作。

  • 按照博日Simply总RNA提取试剂盒说明书操作,提取肝脏、脾脏、肾脏以及肠道的RNA,按照PrimeScriptTM RT reagent Kit with gDNA Eraser说明书操作,将RNA反转录成cDNA,使用TB Green Premix Ex Taq Ⅱ在ABI 7500仪器中进行qPCR反应,分别检测IL-1βIL-8、IL-10及TNF-α基因表达水平 (表2)。

    引物
    primer
    序列
    sequence
    长度/bp
    size
    IL-1β-F TCCGATGACACTGAAGAAT 172
    IL-1β-R GATGTACTGAGCCGAAGG
    IL-8-F CTTCTCGGCTGTATCTGTG 160
    IL-8-R TTCCTCTTGCGACTCTTC
    IL-10-F TGGCAGTGAAGAAGACAT 182
    IL-10-R CTTTGAAGTGCTCAGGGA
    TNF-α-F ACAATACCACCCCAGGTCCCA 182
    TNF-α-R ACGCAGCATCCTCTCATCCAT
    β-actin-F CACTGTGCCCATCTACGAG 198
    β-actin-R CCATCTCCTGCTCGAAGTC

    Table 2.  Primer information

  • 采用SPSS 20.0软件对乌鳢生长、抗氧化及免疫指标数据进行单因素方差分析,若方差分析显著,进一步进行Duncan氏多重比较,分析组间差异显著性,显著水平设定为0.05,实验数据采用平均值±标准差 (mean±SD)表示。

2.   结果
  • 结果显示,饲料中添加的3种乳酸菌均可显著提高乌鳢的AWGR、SGR和FER(P<0.05),其中L21组AWGR、SGR和FER最高,W21组与L2组间差异不显著(P>0.05)。各组间CF、HSI、VSI与对照组相比均无显著性差异(P>0.05)(表3)。

    项目
    item
    乳酸菌 LAB
    对照组 controlL21组W21组L2组
    初始体质量/g IBM 3.40±0.07 3.45±0.02 3.47±0.02 3.38±0.05
    终末体质量/g FBM 10.82±0.02a 16.28±0.54d 14.30±0.22c 13.13±0.61b
    平均增重率/% AWGR 216.47±8.62a 371.32±13.44c 312.26±8.14b 288.57±12.42b
    特定生长率/(%/d) SGR 2.06±0.05a 2.77±0.05c 2.53±0.04b 2.42±0.06b
    饲料效率/% FER 55.07±1.13a 74.34±3.02c 66.82±1.44b 61.62±3.53b
    肥满度/(g/cm3) CF 1.09±0.16 1.15±0.08 1.06±0.2 1.07±0.06
    脏体比/% VSI 4.65±0.29 4.53±0.81 3.49±0.73 4.88±0.97
    肝体比/% HSI 0.96±0.05 0.78±0.14 0.93±0.23 0.90±0.13
    成活率/% survival rate 100 100 100 100
    注:同行数据肩标小写字母不同者表示组间差异显著(P<0.05)
    Notes: Different lowercase letters in the same line of data indicate significant differences between groups (P<0.05)

    Table 3.  Effects of three kinds of LAB on the growth performance and feed utilization of C. argus

  • L2组SOD活性显著高于对照组和L21组(P<0.05),W21组与各组差异均不显著(P>0.05)。L2组CAT活性显著高于其他各组(P<0.05),其他3组间无显著差异(P>0.05)。3乳酸菌处理组GSH活性均有提升,其中L2组GSH显著高于对照组(P<0.05),L21和W21组与对照组和L2组均无显著差异(P>0.05)(图1)。W21组和L2组LZM活性显著高于对照组(P<0.05),且W21和L2组间差异不显著(P>0.05)。L2组AKP活性显著高于对照组(P<0.05),W21组AKP活性有所上升但并不显著(P>0.05)。3种乳酸菌处理组IgM水平均有上升趋势,但与对照组差异并不显著(P>0.05)(图2)。

    Figure 1.  Effect of three kinds of LAB on the serum antioxidant enzyme activity of C. argus

    Figure 2.  Effects of three kinds of LAB on the serum immune enzyme activity of C. argus

  • 各组织免疫相关基因表达量均有上升,肝脏中W21组IL-1βIL-8和IL-10基因表达水平显著高于对照组(P<0.05),各组肝脏中TNF-α基因表达水平均不显著(P>0.05)。脾脏中L2组IL-1β基因表达水平最高,且显著高于对照组(P<0.05),L2和L21组IL-10基因表达水平显著高于对照组(P<0.05),L21及L2组IL-8基因表达水平显著高于对照组(P<0.05),L2组TNF-α基因表达水平显著高于对照组(P<0.05)。肾脏中各组IL-10和TNF-α基因表达水平无显著差异(P>0.05),L2组IL-1βIL-8基因表达水平显著高于对照组(P>0.05)。肠道中各组基因表达水平均有提高,肠道中乳酸菌处理组IL-1βIL-10基因表达水平均显著高于对照组(P<0.05),且各组间并无显著差异(P>0.05);W21与L2组IL-8基因表达水平显著高于对照组(P<0.05),且两组间差异不显著(P>0.05);L2组TNF-α基因表达水平显著高于对照组(P<0.05)(图3)。

    Figure 3.  Effect of three kinds of LAB on the genes expression of IL-1β (a), IL-10 (b), IL-8 (c) and TNF-α (d) of C. argus

3.   讨论
  • 乳酸菌作为饲料添加剂可缓冲营养成分的代谢平衡状态,促使动物的生长发育。以往对点带石斑鱼(Epinephelus coioides)[17]、牙鲆(Paralichthys olivaceus)[18-19]、大西洋鲷(Sparus aurata)[20]、草鱼[7]和鲫(Carassius auratus)[21]等的研究中均发现乳酸菌能显著提鱼的生长性能及饲料利用。在本实验条件下,与对照组相比,饲料中添加L. lactis L21,L. plantarum W21和E. faecalis L2的乌鳢AWGR、SGR及FER显著升高,其中效果最好的是L. lactis L21,L. plantarum W21和E. faecalis L2效果相似。与本实验结果相似的是,Dawood等[22]研究中发现与对照组相比鼠李糖乳杆菌(Lactobacillus rhamnosus)和L. lactis均显著提高了真鲷(Pagrus major)的AWGR、SGR及FER,但2组间差异不显著,且真鲷的VSI和HSI与对照物无显著差异。Beck等[23]发现L. lactisL. plantarum可提高牙鲆的生长性能和饲料效率,其中L. lactis效果优于L. plantarum。周晓波等[9]比较了5种乳酸菌对奥尼罗非鱼生长性能的影响,结果表明L. plantarumE. faecalis有效提高了奥尼罗非鱼的AWGR和SGR,且2种乳酸菌效果无显著差异。Son等[17]研究了L. lactisE. faecalis对石斑鱼生长性能的影响,发现2种乳酸菌均能提高石斑鱼的AWGR,降低了饲料系数,但2种益生菌间差异不显著。目前,关于不同乳酸菌对水产动物生长性能影响的结果并不统一,这可能与特定的乳酸菌株作用机制和功能以及投喂时间的长短不同有关。

  • 氧化应激是水产动物发生疾病的主要原因之一,SOD、CAT及GSH作为机体抗氧化酶,其活性的高低可以直接反映出机体的抗氧化水平[24],SOD酶活性水平对益生菌的抗氧化起主要作用[25],可催化超氧自由基歧化为反应性较低的H2O2,以缓解氧化应激,CAT则催化组织器官中的H2O2分解为水H2O和O2[26],GSH通过巯基结合自由基将其还原,从而清除自由基发挥其抗氧化能力。有研究表明鱼类肠道定植的乳酸菌具有抗氧化活性[27],黄燕华等[28]研究发现L. plantarumE. faecalis可显著提高奥尼罗非鱼血清SOD活性。Dawood等[22]在真鲷饲料中添加L. rhamnosusL. lactis,结果表明血清SOD活性更高,对氧化应激的耐受力更强,可能是由于乳酸菌定植刺激了肠道黏膜免疫从而提高抗氧化能力。本实验中添加E. faecalis L2的乌鳢血清SOD、CAT及GSH活性显著上升,而添加L. lactis L21,L. plantarum W21的乌鳢血清抗氧化酶活性的变化并不显著,可能是因为乳酸菌的抗氧能力既具有种属特异性,又具有菌株特异性。

  • 体液免疫指标对于指示鱼的生理和一般健康状况非常重要,它反映了营养和环境的变化[29]。血清LZM和AKP在机体的非特异免疫防御中发挥着重要作用,它们是单核巨噬细胞的分泌酶,其活性反映着机体的非特异性免疫能力。IgM主要分布于血清中,具有强大的杀菌、激活补体、免疫调节作用。含乳酸菌的制剂可提高LZM及IgM活性[30-31],本实验中添加L. plantarum W21和E. faecalis L2的乌鳢血清LZM和AKP活性有所升高,与本实验结果相似,Beck等[23]对比了L. lactisL. plantarum对牙鲆免疫功能的影响,发现二者均可增加牙鲆黏液LZM活性。黄燕华等[27]研究发现奥尼罗非鱼除E. faecalis之外的乳酸菌处理组血清LZM活性均有提升,L. plantarum和戊糖乳杆菌(Lactobacillus pentosus)提高了AKP活性。Dawood等[22]的实验发现L. rhamnosusL. lactis可显著提高真鲷血清LZM活性。Aly等[30]将嗜酸乳杆菌(Lactobacillus acidophilus)添加在尼罗罗非鱼(Oreochromis niloticus)饲料中,经一段时间的喂养,尼罗罗非鱼的血清LZM活性有显著的提高。Jami等[32]对海鳟(Salmo trutta caspius)的研究中发现L. plantarum组LZM和IgM均显著提高。相反的是,本实验中各组IgM水平与对照组无显著差异,尼罗罗非鱼和虹鳟(Oncorhynchus mykiss)的血清LZM活性并不受E. faecalis的影响,欧洲鲈(Dicentrarchus labrax)血清中AKP活性也未受L. plantarum的影响,可能是因为这些菌株的功能不同,也受到遗传、营养和环境因素以及益生菌菌株来源的影响[33-35]

  • IL-1βTNF-α主要由活化的巨噬细胞分泌,是天然免疫系统的重要刺激因子,通常被用作免疫调节研究中的参考基因[36]IL-8主要由巨噬细胞上皮细胞和内皮细胞产生,可诱导中性粒细胞和其他粒细胞迁移到感染部位发挥作用;IL-10是最重要的抗炎细胞因子之一,它不仅能减少促炎细胞因子的产生,而且能抑制它们的作用[37]。这些炎症因子不仅可以激活免疫细胞起到免疫调节作用,也可以刺激其他炎症介质产生而引发炎症或加剧炎症[38]。研究表明,服用益生菌可导致免疫相关基因的上调[32],本实验中各组织IL-1βIL-8、IL-10和TNF-α基因表达水平均有不同程度升高,3种乳酸菌对肠道中免疫基因的表达均有促进效果,说明乳酸菌对乌鳢免疫功能的提高可能是通过促进肠道免疫基因的表达来实现。Beck等[23]对牙鲆的研究中发现L. lactisL. plantarum均可诱导牙鲆IL-8及TNF-α的基因表达。在对尼罗罗非鱼的研究中表明L. rhamnosusL. lactisL. plantarum可诱导尼罗罗非鱼肠道TNF-αIL-1β的表达[36, 39]。饲料中添加枯草芽孢杆菌也可上调锦鲤(Cyprinus carpio)肠道IL-1βTNF-α的基因表达[40]。Jami等[32]对海鳟的研究中发现单独添加L. plantarum上调了IL-8的基因表达。与此相反,饲料中的德氏乳杆菌下调了欧洲鲈肠道T细胞中IL-1β的表达,这些不同的结果可能与细菌对肠壁的黏附特性有关[41]。尽管目前乳酸菌给鱼类带来的免疫学优势已得到充分证明,但关于乳酸菌提高免疫力的分子机制还有待进一步研究。

4.   结论
  • 综上所述,本实验条件下,饲料中添加一定量的L. lactis L21对乌鳢的生长性能及饲料利用促进效果最佳,对免疫基因表达水平也有促进作用,但对血清抗氧化功能及非特异性免疫指标影响不大,可能是由于L. lactisL. plantarumE. faecalis间发挥作用的机制并不相同,具体还有待深入研究。

Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return