• ISSN 1000-0615
  • CN 31-1283/S
Volume 45 Issue 10
Oct.  2021
Article Contents
Turn off MathJax

Citation:

Research progress on aquaculture and feeding regulation mechanism of Mandarin fish

  • Corresponding author: CHEN Naisong, nschen@shou.edu.cn
  • Received Date: 2020-08-11
    Accepted Date: 2021-01-04
    Available Online: 2021-04-12
  • Mandarin fish (Siniperca sp.) is a valuable freshwater economic fish in China, and its production has approached 330000 tons in 2019. This paper introduced aquaculture situation of Siniperca sp. from three aspects, including aquaculture status, aquaculture mode and selective breeding. The feeding habit of Siniperca sp. is unique, which relies on prey fish for lifetime. For many years, prey fish are mainly used to feed Siniperca sp., and the way of raising fish by fish not only causes the waste of fishery resources, but also aggravates the damage to environment and resources. Thus, the paper also summarized the external factors affecting feeding characteristics of Siniperca sp. species from environmental factors and feed properties, and analyzed the internal factors from the aspects of feeding sense organs and feeding regulation factors. This may be helpful to adjust the feeding habits of Siniperca sp. through artificial intervention, and provide necessary basis for its conversion to eat formula feed. Additionally, it is necessary to strengthen the research on the feeding regulation mechanism and nutritional physiological demand characteristics, so as to achieve the breakthrough of compound feed and promote the green and healthy development of its aquaculture industry.
  • 加载中
  • [1] 郑慈英. 珠江鱼类志, 鳜鱼属[M]. 北京: 科学出版社, 1989: 307-317.Zheng C Y. The fishes of Pearl River, Siniperca[M]. Beijing: Science Press, 1989: 307-317 (in Chinese).
    [2] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 25.Ministry of Agriculture and Rural Affairs, China, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistics yearbook of 2019[M]. Beijing: China Agriculture Press, 2019: 25 (in Chinese).
    [3] 李燕, 史建华, 施顺昌, 等. 不同饲料对杂交鳜生长、成活率及体成分影响的比较[J]. 水产科技情报, 2014, 41(3): 127-130.Li Y, Shi J H, Shi S C, et al. Effects of different feeds on the growth, survival rate and body composition of hybrid Mandarin fish[J]. Fisheries Science & Technology Information, 2014, 41(3): 127-130(in Chinese).
    [4] 姚国成, 梁旭方. 鳜鱼高效生态养殖新技术[M]. 北京: 海洋出版社, 2015: 8.Yao G C, Liang X F. New Technology of efficient ecological culture of Mandarin fish[M]. Beijing: China Ocean Press, 2015: 8 (in Chinese).
    [5] 梁旭方. 国内外鳜类研究及养殖概况[J]. 水产科技情报, 1996, 23(1): 13-17.Liang X F. Study on Manderin fish and its culture home and abroad[J]. Fisheries Science & Technology Information, 1996, 23(1): 13-17(in Chinese).
    [6] 周才武, 杨青, 蔡德霖. 鳜亚科Sinipercinae鱼类的分类整理和地理分布[J]. 动物学研究, 1988, 9(2): 113-125.Zhou C W, Yang Q, Cai D L. On the classification and distribution of the Sinipercinae fishes (family Serranidae)[J]. Zoological Research, 1988, 9(2): 113-125(in Chinese).
    [7] Cao X Y, Zhao J L, Li C H, et al. Morphological and skeletal comparison and ecological adaptability of Mandarin fish Siniperca chuatsi and big-eye Mandarin fish Siniperca kneri[J]. Aquaculture and Fisheries, 2020.
    [8] 宋光同, 崔凯, 程文平, 等. 克氏原螯虾和鳜鱼池塘混养不同模式的比较[J]. 安徽农业科学, 2018, 46(14): 103-106. doi: 10.3969/j.issn.0517-6611.2018.14.029Song G T, Cui K, Cheng W P, et al. Comparison of different pond polyculture models of Procambarus clarkii and Siniperca chuatsi[J]. Journal of Anhui Agricultural Sciences, 2018, 46(14): 103-106(in Chinese). doi: 10.3969/j.issn.0517-6611.2018.14.029
    [9] 章爱华. 蟹、鳜池塘微孔增氧生态高效养殖技术[J]. 河北渔业, 2017(3): 39-41. doi: 10.3969/j.issn.1004-6755.2017.03.011Zhang A H. Ecological and efficient culture technology of microporous aeration in crab and Mandarin fish ponds[J]. Hebei Fisheries, 2017(3): 39-41(in Chinese). doi: 10.3969/j.issn.1004-6755.2017.03.011
    [10] 侯玉兰, 陈如国. 陆明干鳜鱼与狗鱼混养效果好[J]. 科学养鱼, 2009(3): 46-47.Hou Y L, Chen R G. The mixed breeding of Mandarin fish and pike are good[J]. Scientific Fish Farming, 2009(3): 46-47(in Chinese).
    [11] 戴玉红, 展翠芬, 朱爱琴. 暗纹东方鲀套养鳜鱼健康高效养殖试验[J]. 科学养鱼, 2013(5): 34-35.Dai Y H, Zhan C F, Zhu A Q. Healthy and efficient breeding of Takifugu fasciatus with mandarin fish[J]. Scientific Fish Farming, 2013(5): 34-35(in Chinese).
    [12] 曾春红, 吕夫成. 鳜鱼养殖技术之三: 湖泊网围河蟹、鳜鱼、鳙鱼套养技术[J]. 中国水产, 2006(7): 30-31. doi: 10.3969/j.issn.1002-6681.2006.07.021Zeng C H. Lv F C. Technique of net enclosure farming river crab, mandarin fish and bighead carp in lake[J]. China Fisheries, 2006(7): 30-31(in Chinese). doi: 10.3969/j.issn.1002-6681.2006.07.021
    [13] 钱克林, 周静. 黑麦草、龙虾、鳜鱼生态高效轮养技术[J]. 水产养殖, 2010, 31(7): 18-19. doi: 10.3969/j.issn.1004-2091.2010.07.010Qian K L, Zhou J. Eco-efficient rotary culture technology of ryegrass, crayfish and mandarin fish[J]. Journal of Aquaculture, 2010, 31(7): 18-19(in Chinese). doi: 10.3969/j.issn.1004-2091.2010.07.010
    [14] 吴明林, 崔凯, 李海洋, 等. 虾稻鳜共作生态种养技术研究[J]. 安徽农业科学, 2018, 46(34): 62-64. doi: 10.3969/j.issn.0517-6611.2018.34.021Wu M L, Cui K, Li H Y, et al. Study on the ecological farming technique of shrimp-rice-mandarin fish co-culture[J]. Journal of Anhui Agricultural Sciences, 2018, 46(34): 62-64(in Chinese). doi: 10.3969/j.issn.0517-6611.2018.34.021
    [15] 陈俊豪, 丁文岭, 陈庆, 等. 翘嘴鳜“华康1号”苗种培育和成鱼养殖试验[J]. 科学养鱼, 2018(1): 40-41.Chen J H, Ding W L, Chen Q, et al. The larvae rearing and adult fish culturing of Siniperca chuatsi "Huakang No. 1"[J]. Scientific Fish Farming, 2018(1): 40-41(in Chinese).
    [16] 钱叶周, 吴超, 赵金良, 等. 秋浦杂交斑鳜[J]. 中国水产, 2016(2): 58-60.Qian Y Z, Wu C, Zhao J L, et al. “Qiupu” hybrid Mandarin fish, Siniperca chuatsi[J]. China Fisheries, 2016(2): 58-60(in Chinese).
    [17] 李桂峰, 卢薛, 古勇明, 等. 长珠杂交鳜推广指南[J]. 中国水产, 2017(9): 52-56.Li G F, Lu X, Gu Y M, et al. The extension guide of “Changzhu” hybrid mandarin fish[J]. China Fisheries, 2017(9): 52-56(in Chinese).
    [18] 陈玲, 孙成飞, 董浚键, 等. 翘嘴鳜“广清一号”池塘高效养殖技术[J]. 科学养鱼, 2018(12): 45-46.Chen L, Sun C F, Dong J J, et al. High-efficiency culture technique of "Guangqing No. 1" Madanrin fish[J]. Scientific Fish Farming, 2018(12): 45-46(in Chinese).
    [19] 魏开建, 张桂蓉, 张海明. 鳜鱼不同生长阶段中趋光特性的研究[J]. 华中农业大学学报, 2001, 20(2): 164-168. doi: 10.3321/j.issn:1000-2421.2001.02.016Wei K J, Zhang G R, Zhang H M. Studies on the phototactic characteristics of Mandarin fish (Siniperca chuatsi) during different development stages[J]. Journal of Huazhong Agricultural University, 2001, 20(2): 164-168(in Chinese). doi: 10.3321/j.issn:1000-2421.2001.02.016
    [20] 梁旭方, 郑微云, 王艺磊. 鳜鱼视觉特性及其对捕食习性适应的研究Ⅰ. 视网膜电图光谱敏感性和适应特性[J]. 水生生物学报, 1994, 18(3): 247-253. doi: 10.3321/j.issn:1000-3207.1994.03.009Liang X F, Zheng W Y, Wang Y L. Visual characteristics of Mandarin fish (Siniperca chuatsi) in relation to its feeding habit: I. Photo-sensitivity and spectral sensitivity of electroretinogram[J]. Acta Hydrobiologica Sinica, 1994, 18(3): 247-253(in Chinese). doi: 10.3321/j.issn:1000-3207.1994.03.009
    [21] 李修峰, 黄道明, 杨汉运. 光照对大眼鳜鱼幼鱼摄食强度的影响[J]. 湖南农业大学学报(自然科学版), 2005, 31(2): 187-190.Li X F, Huang D M, Yang H Y. Effect of light on young Siniperca kneri Garman's ingested amount[J]. Journal of Hunan Agricultural University (Natural Sciences), 2005, 31(2): 187-190(in Chinese).
    [22] Song Y, Zhao C, Liang X F, et al. Effects of fasting, temperature, and photoperiod on preproghrelin mRNA expression in Chinese perch[J]. Fish Physiology and Biochemistry, 2017, 43(3): 803-812. doi: 10.1007/s10695-016-0335-y
    [23] Ren Y, Xiong M T, Yu J X, et al. Effects of artificial submersed vegetation on consumption and growth of Mandarin fish Siniperca chuatsi (Basilewsky) foraging on live prey[J]. Journal of Freshwater Ecology, 2019, 34(1): 433-444. doi: 10.1080/02705060.2018.1561530
    [24] 梁旭方. 鳜鱼视觉特性及其对捕食习性适应的研究: Ⅲ. 视觉对猎物运动和形状的反应[J]. 水生生物学报, 1995, 19(1): 70-75.Liang X F. Visual characteristics of Mandarin fish (Siniperca chuatsi) in relation to its feeding habit: Ⅲ. Visual response to prey motion and shape[J]. Acta Hydrobiologica Sinica, 1995, 19(1): 70-75(in Chinese).
    [25] 梁旭方. 鳜鱼视觉特性及其对捕食习性适应的研究: Ⅱ. 视网膜结构特性[J]. 水生生物学报, 1994, 18(4): 376-377. doi: 10.3321/j.issn:1000-3207.1994.04.009Liang X F. Visual characteristics of Mandarin fish (Siniperca chuatsi) in relation to its feeding habit: Ⅱ. General properties of the retina[J]. Acta Hydrobiologica Sinica, 1994, 18(4): 376-377(in Chinese). doi: 10.3321/j.issn:1000-3207.1994.04.009
    [26] 梁旭方. 鳜鱼驯食人工饲料原理与技术[J]. 淡水渔业, 1994, 24(6): 36-37.Liang X F. Principle and technology on the domestication of artificial feed of Mandarin fish[J]. Freshwater Fisheries, 1994, 24(6): 36-37(in Chinese).
    [27] 钱国英. 不同驯食方式对鳜鱼胃肠道消化酶活性的影响[J]. 浙江农业大学学报, 1998, 24(2): 207-210.Qian G Y. Change of digestive enzyme activities in intestinal canal of domesticated Mandarin fish[J]. Journal of Zhejiang Agricultural University, 1998, 24(2): 207-210(in Chinese).
    [28] Dou Y Q, He S, Liang X F, et al. Memory function in feeding habit transformation of Mandarin fish (Siniperca chuatsi)[J]. International Journal of Molecular Sciences, 2018, 19(4): 1254. doi: 10.3390/ijms19041254
    [29] 吴遵霖, 李蓓, 李桂云, 等. 鳜鱼活食性与配合饲料驯饲养殖[J]. 渔业致富指南, 1998(23): 24-26.Wu Z L, Li B, Li G Y, et al. The feeding habit relied on prey fish and compound feed domesticated culture of Mandarin fish[J]. Fishery Guide to be Rich, 1998(23): 24-26(in Chinese).
    [30] 李顺, 宋述芹, 池福良. 鳜鱼的摄食特性及人工驯饲方法[J]. 渔业致富指南, 2009(2): 39.Li S, Song S Q, Chi F L. The feeding characteristic and artificial domestication method of Mandarin fish[J]. Fishery Guide to be Rich, 2009(2): 39(in Chinese).
    [31] 吴遵霖, 李蓓, 李桂云, 等. 鳜鱼配合饲料驯饲与养殖研究[J]. 淡水渔业, 1996, 26(1): 16-19.Wu Z L, Li B, Li G Y, et al. The domestication and culture of Mandarin fish with formula feed[J]. Freshwater Fisheries, 1996, 26(1): 16-19(in Chinese).
    [32] 吴遵霖, 李蓓. 填喂配合饲料对鳜鱼营养的初步研究: 研究简报[J]. 水产学报, 1989, 13(4): 360-364.Wu Z L, Li B. On nutrient requirements of the Mandarin fish (Siniperca chuatsi) fed with formulated feed by force[J]. Journal of Fisheries of China, 1989, 13(4): 360-364(in Chinese).
    [33] 王责英, 曾可为, 郑翠华, 等. 饲料脂肪水平对鳜鱼生长的影响[J]. 饲料研究, 2003(4): 38-39, 41. doi: 10.3969/j.issn.1002-2813.2003.04.019Wang Z Y, Zeng K W, Zheng C H, et al. Effect of dietary lipid on growth of Mandarin fish[J]. Feed Research, 2003(4): 38-39, 41(in Chinese). doi: 10.3969/j.issn.1002-2813.2003.04.019
    [34] Alam M S, Liang X F, Liu L W, et al. Growth and metabolic response of Chinese perch to different dietary protein-to-energy ratios in artificial diets[J]. International Journal of Molecular Sciences, 2019, 20(23): 5983. doi: 10.3390/ijms20235983
    [35] Li L, Fang J G, Liang X F, et al. Effect of feeding stimulants on growth performance, feed intake and appetite regulation of Mandarin fish, Siniperca chuatsi[J]. Aquaculture Research, 2019, 50(12): 3684-3691. doi: 10.1111/are.14327
    [36] 任萍, 梁旭方, 方刘, 等. 鳜对葡萄糖和糊精利用差异比较研究[J]. 水生生物学报, 2020, 44(2): 364-371. doi: 10.7541/2020.044Ren P, Liang X F, Fang L, et al. Comparative study of the difference in glucose and dextrin utilization in the Chinese perch (Siniperca chuatsi)[J]. Acta Hydrobiologica Sinica, 2020, 44(2): 364-371(in Chinese). doi: 10.7541/2020.044
    [37] 赵红月, 薛敏, 解绶启. 鱼类的摄食感觉[J]. 水产科技情报, 2010, 37(5): 230-234. doi: 10.3969/j.issn.1001-1994.2010.05.006Zhao H Y, Xue M, Xie S Q. Feeding sense of fishes[J]. Fisheries Science & Technology Information, 2010, 37(5): 230-234(in Chinese). doi: 10.3969/j.issn.1001-1994.2010.05.006
    [38] Lv L Y, Liang X F, He S. Genome-wide identification and characterization of olfactory receptor genes in Chinese perch, Siniperca chuatsi[J]. Genes, 2019, 10(2): 178. doi: 10.3390/genes10020178
    [39] Liang X F, Kiu J K, Huang B Y. The role of sense organs in the feeding behaviour of Chinese perch[J]. Journal of Fish Biology, 1998, 52(5): 1058-1067. doi: 10.1111/j.1095-8649.1998.tb00603.x
    [40] 梁旭方. 鳜侧线管结构和行为反应特性及其对捕食习性的适应[J]. 海洋与湖沼, 1996, 27(5): 457-462. doi: 10.3321/j.issn:0029-814X.1996.05.001Liang X F. The structure and behavioural response of lateral line of Siniperca chuatsi in relation to its feeding habit[J]. Oceanologia et Limnologia Sinica, 1996, 27(5): 457-462(in Chinese). doi: 10.3321/j.issn:0029-814X.1996.05.001
    [41] 梁旭方. 鳜捕食行为的研究[J]. 海洋与湖沼, 1995, 26(5): 119-125.Liang X F. On the feeding behaviour of Mandarin fish (Siniperca chuatsi)[J]. Oceanologia et Limnologia Sinica, 1995, 26(5): 119-125(in Chinese).
    [42] 梁旭方. 鳜鱼口咽腔味蕾和行为反应特性及其对捕食习性的适应[J]. 动物学报, 1996, 42(1): 22-27.Liang X F. Taste buds in the oropharyngeal cavity of Mandarin fish (Siniperca chuatsi): scanning electron microscopic and behavioural investigations in relation to fish feeding habit[J]. Acta Zoologica Sinica, 1996, 42(1): 22-27(in Chinese).
    [43] 杨秀平, 黄祥柱. 鳜的口、咽腔味蕾形态和数量的初步研究[J]. 华中农业大学学报, 1996, 15(4): 365-369.Yang X P, Huang X Z. A preliminary study on the morphology and quantity of the oropharyngeal cavity taste bulbs of Siniperca chuatsi[J]. Journal of Huazhong Agricultural University, 1996, 15(4): 365-369(in Chinese).
    [44] 梁旭方. 鳜鱼摄食的感觉原理[J]. 动物学杂志, 1995, 30(1): 56.Liang X F. The sensory principle of the fish feeding[J]. Chinese Journal of Zoology, 1995, 30(1): 56(in Chinese).
    [45] Zhang R Q, Zhao J L, Hao Y Y, et al. Retinal development in Mandarin fish Siniperca chuatsi and morphological analysis of the photoreceptor layer[J]. Journal of Fish Biology, 2019, 95(3): 903-917.
    [46] 解涵, 解玉浩. 鱼类摄食的经济学[J]. 河北渔业, 2003(6): 11-14. doi: 10.3969/j.issn.1004-6755.2003.06.005Xie H, Xie Y H. The economics of feeding of fish[J]. Hebei Fisheries, 2003(6): 11-14(in Chinese). doi: 10.3969/j.issn.1004-6755.2003.06.005
    [47] 殷名称. 鱼类生态学[M]. 基隆: 水产出版社, 1998: 142.Yin M C. Fish ecology[M]. Keelung City: Aquatic Press, 1998: 142 (in Chinese).
    [48] He S, Li L, Lv L Y, et al. Mandarin fish (Sinipercidae) genomes provide insights into innate predatory feeding[J]. Communications Biology, 2020, 3(1): 361. doi: 10.1038/s42003-020-1094-y
    [49] Soengas J L, Cerdá-Reverter J M, Delgado M J. Central regulation of food intake in fish: an evolutionary perspective[J]. Journal of Molecular Endocrinology, 2018, 60(4): R171-R199. doi: 10.1530/JME-17-0320
    [50] Liang X F, Li G Z, Yao W, et al. Molecular characterization of neuropeptide Y gene in Chinese perch, an acanthomorph fish[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2007, 148(1): 55-64. doi: 10.1016/j.cbpb.2007.04.016
    [51] 窦亚琪, 梁旭方, 高俊杰, 等. 鳜pepgh基因SNP标记与驯食性状的关联分析[J]. 中国水产科学, 2020, 27(5): 485-493.Dou Y Q, Liang X F, Gao J J, et al. Single nucleotide polymorphisms in pepsinogen gene, growth hormone gene and their association with food habit domestication traits in Siniperca chuatsi[J]. Journal of Fishery Sciences of China, 2020, 27(5): 485-493(in Chinese).
    [52] Peng J, Dou Y Q, Liang H, et al. Social learning of acquiring novel feeding habit in Mandarin fish (Siniperca chuatsi)[J]. International Journal of Molecular Sciences, 2019, 20(18): 4399. doi: 10.3390/ijms20184399
    [53] 张真, 梁旭方, 徐晶, 等. PYY组织表达及对翘嘴鳜的摄食调控[J]. 华中农业大学学报, 2020, 39(1): 136-143.Zhang Z, Liang X F, Xu J, et al. Tissue expression and food intake attenuation effect of peptide YY in Chinese perch (Siniperca chuatsi)[J]. Journal of Huazhong Agricultural University, 2020, 39(1): 136-143(in Chinese).
    [54] 谢爽, 何磊, 梁旭方, 等. γ-氨基丁酸-A型受体拮抗剂对翘嘴鳜摄食及糖代谢的影响[J]. 华中农业大学学报, 2018, 37(5): 104-109.Xie S, He L, Liang X F, et al. Effect of γ-aminobutyric acid-A receptor antagonist on food intake and glucose metabolism in Chinese perch (Siniperca chuatsi)[J]. Journal of Huazhong Agricultural University, 2018, 37(5): 104-109(in Chinese).
    [55] He S, Liang X F, Sun J, et al. Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) Mandarin fish through transcriptome analysis[J]. BMC Genomics, 2013, 14: 601. doi: 10.1186/1471-2164-14-601
    [56] 朱强胜, 何珊, 梁旭方, 等. 六种必需氨基酸对翘嘴鳜摄食调控的影响[J]. 水产科技情报, 2020, 47(3): 154-161.Zhu Q S, He S, Liang X F, et al. Effect of six essential amino acids on feeding regulation of Chinese perch[J]. Fisheries Science & Technology Information, 2020, 47(3): 154-161(in Chinese).
  • Relative Articles

    [1] CHEN Xiaowu, SHEN Yawei, ZHAO Jinliang, WU Minglin. Culture and application of Siniperca chuatsi embryo cell line. Journal of fisheries of china, 2018, 42(10): 1626-1634.  doi: 10.11964/jfc.20170810942
    [2] SHI Linjie, LIANG Xufang, HE Shan, PENG Jian. Primary culture and identification of brain neurons in Chinese perch (Siniperca chuatsi). Journal of fisheries of china, 2020, 44(1): 43-48.  doi: 10.11964/jfc.20190111630
    [3] KUANG Yulan, LIANG Xufang, CAI Wenjing, HE Shan, XU Jing, GAO Junjie, WEI Junran. Primary cell culture of hypothalamus neurons in Siniperca chuatsi. Journal of fisheries of china, 2021, 45(2): 179-186.  doi: 10.11964/jfc.20200112136
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article views(1158) PDF downloads(97) Cited by()

Related
Proportional views

Research progress on aquaculture and feeding regulation mechanism of Mandarin fish

    Corresponding author: CHEN Naisong, nschen@shou.edu.cn
  • 1. Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai    201306, China
  • 2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai    201306, China

Abstract: Mandarin fish (Siniperca sp.) is a valuable freshwater economic fish in China, and its production has approached 330000 tons in 2019. This paper introduced aquaculture situation of Siniperca sp. from three aspects, including aquaculture status, aquaculture mode and selective breeding. The feeding habit of Siniperca sp. is unique, which relies on prey fish for lifetime. For many years, prey fish are mainly used to feed Siniperca sp., and the way of raising fish by fish not only causes the waste of fishery resources, but also aggravates the damage to environment and resources. Thus, the paper also summarized the external factors affecting feeding characteristics of Siniperca sp. species from environmental factors and feed properties, and analyzed the internal factors from the aspects of feeding sense organs and feeding regulation factors. This may be helpful to adjust the feeding habits of Siniperca sp. through artificial intervention, and provide necessary basis for its conversion to eat formula feed. Additionally, it is necessary to strengthen the research on the feeding regulation mechanism and nutritional physiological demand characteristics, so as to achieve the breakthrough of compound feed and promote the green and healthy development of its aquaculture industry.

    • 鳜(Siniperca sp.)在分类学上隶属于鲈形目(Perciformes)暖鲈科(Percichthyidae)鳜亚科(Sinipercinae),俗称桂花鱼、鳌花及花鲫等[1]。因其肉质丰腴、无肌间刺、味道鲜美、胆固醇含量低及营养价值高等优点,在我国广泛养殖。据统计,我国鳜养殖量逐年递增,2003—2019年间,国内鳜产量从15万t增至30多万t。鳜养殖主产区为广东、江西、湖北、安徽及江苏等多个省份,其中广东的鳜产量最高,约占全国总产量的30%[2]。因其独特的摄食习性,多年来我国主要以饵料鱼进行鳜的养殖,这种养殖方式不仅会造成渔业资源的浪费、养殖水环境的污染,还会导致鳜的抗病力下降、疾病频发等问题,严重制约着我国鳜养殖业的可持续发展[3]。因此,本文在介绍鳜养殖概况的基础上,聚焦鳜摄食调控机制研究现状,以期通过人工干预的方式实现鳜转食配合饲料,促进鳜养殖业的绿色健康发展。

    2.   鳜养殖概况
    • 鳜的种类主要包括翘嘴鳜(S. chuatsi)、斑鳜(S. scherzeri)及大眼鳜(S. kneri)等。翘嘴鳜原产于湖北,因其生长优势明显且生长周期短,是鳜养殖生产中的主要品种[4]。斑鳜和大眼鳜也有少量养殖。在养殖生产中,翘嘴鳜与大眼鳜在幼体阶段难以准确区分[5]。这2个物种在形态学的差异主要体现在头后及背前部隆起程度、眼睛大小及上颌骨后缘是否伸达眼后缘;翘嘴鳜眼较小,头后及背前部隆起较高,上颌骨后缘伸达眼后缘之下或更后;大眼鳜眼较大,头后及背前部隆起较低,上颌骨后端不伸达眼后缘之下[6]。此外,Cao等[7]研究发现,翘嘴鳜与大眼鳜的骨骼特征在眼位及头部隆起等方面存在一定的差异,在头深、头背长、吻长、眼眶间距离、眼与口裂的距离、尾鳍后躯干与基部之间的宽度等方面,翘嘴鳜和大眼鳜之间差异显著。

      多年来,鳜的养殖高度依赖于活饵料,一般每个鳜养殖池塘需要配备4个饵料鱼池塘,这不仅占用了大量的养殖面积,还加剧了周边的环境压力。如今我国已解决了鳜的人工繁殖、苗种培育等一系列问题,目前鳜养殖中的苗种主要源自于人工繁殖。长江中、下游地区一般用团头鲂(Megalobrama amblycephala)出膜苗作为鳜的开口饲料,而广东地区则用当地特有的鲮(Cirrhinus molitorella)和赤眼鳟(Squaliobarbus curriculus)出膜鱼作为鳜的开口饵料[5]

    • 随着水产养殖业的迅速发展,鳜的养殖模式呈现多样化。单养是最为主要的养殖模式。此外,养殖生产者还根据水生动物栖息水层与食性的生物学特性进行混养、轮养或套养。宋光同等[8]、章爱华[9]曾将鳜与甲壳类如克氏原螯虾(Procambarus clarkii)、中华绒螯蟹(Eriocheir sinensis)等进行轮养或混养。同时,也出现了鳜和白斑狗鱼(Esox lucius)[10]、暗纹东方鲀(Takifugu obscurus)[11]等鱼类的套养模式。此外,还有多品种混养,轮养与套养的养殖模式,如中华绒螯蟹-鳜-鳙[12]、黑麦草(Lolium perenne)-克氏原螯虾-鳜[13]及鳜-克氏原螯虾-稻(Oryza sativa)[14]等。

    • 翘嘴鳜、斑鳜和大眼鳜是常见的养殖品种,但是这些品种各有优缺点。斑鳜生长缓慢但其抗病力强,可摄食死鱼;翘嘴鳜生长快但其食性难以驯化;大眼鳜生长迟缓且难以驯化。随着遗传育种技术的不断发展,鳜的良种选育取得一定的突破(表1)。

      品种名称 (品种登记号)
      variety name
      (variety registration number)
      选育方法
      breeding methods
      优点
      advantages
      参考文献
      reference
      翘嘴鳜“华康1号”
      (GS-01-001-2014)
      以江西鄱阳湖、湖南洞庭湖和长江湖北段采捕挑选的野生翘嘴鳜作为基础群体,以生长速度为选育指标,采用群体选育技术,经连续5代选育而成。 与普通翘嘴鳜相比,具有生长速度显著提高及遗传多样性高等优点。 [15]
      秋浦杂交斑鳜
      (GS-02-005-2014)
      以长江支流秋浦河采捕后经3代群体选育的斑鳜为母本和经5代群体选育的鳜为父本杂交获得的品种。 其外形与斑鳜接近,但生长速度比普通斑鳜快,且饵料系数也较斑鳜明显降低。 [16]
      长珠杂交鳜
      (GS-02-003-2016)
      以长江水系洞庭湖捕捞的翘嘴鳜为原种经四代群体选育后为母本和以珠江水系捕捞的斑鳜原种经二代群体选育后为父本杂交而成的品种。 该品种生长速度比斑鳜快,具有抗逆性强、适应性强、易捕捞及耐运输等优点。 [17]
      翘嘴鳜“广清一号”
      (GS-01-003-2021)
      以广东2个养殖群体和湖南洞庭湖1个野生群体作为选育基础群体,采用群体选育和家系选育技术,以生长和成活率为选育目标性状,结合分子系谱鉴定技术,进行选择育种。 与普通翘嘴鳜相比,具有生长速率快,成活率高,受精率、孵化率及开口率均显著提高等优点。 [18]

      Table 1.  The introduction of selective breeding of Siniperca sp.

    3.   鳜的摄食调控机制研究
    • 如前所述,以鱼养鱼的养殖模式严重制约鳜养殖业的绿色发展。国内外诸多专家学者围绕鳜的行为学及生理学开展了大量的研究,提出了鳜食性的形成是环境因子、饵料性质、摄食器官及摄食调控因子等多方面协同作用的结果。本部分围绕上述影响鳜摄食的关键因素,从外因、内因2个方面概述鳜摄食的调控机制,以期为鳜转食配合饲料提供理论支撑。

    • 魏开建等[19]利用光梯度法研究发现,随着鳜规格的增大,其对强光的趋光性逐渐减弱,而对弱光的趋光性逐渐增强,且适宜的光色为短波段的蓝绿光。全长30~40 mm的夏花阶段是鳜趋光特性明显转变的过渡时期[20]。大眼鳜幼鱼的摄食强度与光照强度呈负相关,其摄食强度在全黑暗条件下最大,自然光照下次之,全光照条件下最小[21]。Song等[22]发现,禁食、水温及光照会显著影响鳜的摄食相关基因—前促生长激素释放多肽原基因 (preproghrelin)的表达,胃排空后禁食6 h、适宜水温(26 °C)及正常光照(11 h的光照和13 h的黑暗)均可促进鳜preproghrelin的表达,提高鳜的食欲。此外,光照强度也会影响鳜对饵料的判断,室外池塘中水生植物种植率在30%~60%之间可显著提高鳜的生长性能[23]。综上所述,鳜的投饲或驯饵应在清晨或傍晚进行,且在养殖区域内可种植少量的水生植物,以提供鳜躲避场所,防止鳜受到惊吓过度运动,降低生长速率。若在利用环道和网箱培育鳜苗种时,可以选择适宜的光色将鳜苗诱离残饵污物区,提高清箱、分箱操作的效率[19]

    • 梁旭方[24]早在1995年利用行为学方法,研究了鳜对饵料生物的运动与性状的反应情况。在饵料性状方面,探究了鳜对5种不同活饵料[麦穗鱼(Pseudorasbora parva)、鲫(Carassius sp.)、鳑鲏(Rhodeus sp.)、虾及蜻蜓幼虫]的捕食反应,结果发现鳜对活饵料鱼最为敏感,且对饵料鱼的种类没有选择性,虾次之,对蜻蜓幼虫最不敏感,对死的饵料生物均无反应。在饵料运动特征方面,鳜对不连续运动饵料鱼的跟踪率和攻击率最大,并且饵料鱼的形态和活动能力会影响鳜对食物的选择[24-25]。基于鳜上述摄食特性,梁旭方[26]早在1994年就实现了鳜改变活食性并主动摄食配合饲料的重大突破。钱国英[27]通过条件反射过渡法(投喂顺序:活鱼、死鱼、鱼块、配合饲料)对鳜进行驯化发现,与直接投喂配合饲料组相比,采用此方法驯化的鳜在胰蛋白酶活性、驯化率和生长性能等方面得到明显的提高。此外,Dou等[28]发现,驯食频率与鳜食性转化率有关,驯食频率的提高可以明显改善驯饵率。在保证水质状况良好与溶氧充足的情况下,采用高密度与小体积的养殖方式,有助于缩短驯饵时间,提高驯饵成功率[29]。目前,进行鳜转食驯化的方法:利用人工手段对鳜摄食状态进行循序渐进地诱导,使鳜逐渐由摄食适口的新鲜活泼鱼虾,到摄食不太活泼的活鱼虾,再到摄食新鲜的死鱼虾、鱼块、干鱼虾等,最后成功过渡到摄食人工配合饲料[30]。驯食研究发现,鳜对配合饲料的外形、颜色、含水量、质地、营养及密度等有特定的要求:

      (1)外形。长条形且长宽比为2∶1~3∶1为宜;

      (2)颜色。银白色或浅色[31],确保其在水中有明显的反差,易被鳜发现;

      (3)含水量。含水量约为30%;

      (4)质地。饲料组份应粉碎充分,适当提高脂肪含量,使口感细腻;

      (5)促摄食物质。饲料应含有适量的促摄食物质等[26]

      (6)密度。饲料需落水后缓慢下沉[31]

      目前,鳜营养生理与饲料方面的研究仅有零星报道。吴遵霖等[32]在1989年通过强制填喂配合饲料的方法,研究了饲料蛋白质含量的变化对鳜生长性能的影响,发现其生长性能与饲料粗蛋白含量呈现极显著正相关,饲料粗蛋白含量最高组(62.13%)的相对增重率最高(138.86%),但仍不能说明其达到了鳜最大生长所需的饲料蛋白质水平。王责英等[33]通过梯度添加混合油(豆油∶鱼油=2∶1)研究饲料脂肪水平变化对鳜生长的影响发现,饲料脂肪水平为7%~12%时鳜的特定生长率和蛋白质效率较高。Alam等[34]配置不同蛋白质/能量(P/E,mg/KJ)的饲料投喂饵料鱼后,再将饵料鱼投喂鳜,结果发现,P/E为37.98%时,鳜的生长性能最佳。Li等[35]发现,鱿鱼提取物或肌酸粉的添加可以明显提高鳜的生长性能。任萍等[36]研究表明,鳜可将过量的碳水化合物转化为糖原和脂肪;同时,鳜对不同碳水化合物的代谢效率存在差异,对葡萄糖的利用率低于糊精。

    • 鱼类的摄食感觉器官主要为视觉、嗅觉、味觉和触觉器官,与其他脊椎动物不同的是,其特有的感觉器官—侧线在摄食中也起着重要的作用[37]。据研究,鳜的捕食是依靠视觉和侧线而不是嗅觉[38]。Liang等[39]通过选择性去除或阻断鳜的眼睛、侧线和嗅觉器官后测定鳜对天然饵料的摄食情况,确定了鳜在摄食中感觉器官的反应机理:眼睛是鳜摄食感觉的主要器官,侧线仅在视觉受到限制时才能发挥作用[40],并且只对食物的低频振动产生反应[41]。鳜口咽腔味蕾丰富,几乎都为Ⅰ型和Ⅱ型味蕾,鳜仅能吞进摄入口内的鲜饵料鱼而吐出臭饵料鱼,说明若饵料仅有合适的软硬度而无促进吞咽的化学刺激则无法诱导鳜发生吞咽反应[42];在鳜幼鱼的摄食与吞咽中,Ⅲ型味蕾起着更为重要的作用[43]。鳜的视觉与一般的白昼型中上层鱼类相比具有很大的特殊性:鳜缺少明视视觉和色觉,但其光敏感性非常强,使鳜的眼睛能在较低的光照强度下发挥作用。鳜视觉的这种特性与其摄食习性是一致的[24,44]。Zhang等[45]研究了翘嘴鳜幼鱼阶段视网膜的发育过程,发现翘嘴鳜的视网膜呈现出一种晚熟的发育模式,孵化后需要大量时间才能发育完成。在发育过程中,感光细胞外段的特殊结构和杆状细胞数量的增加印证了翘嘴鳜在昏暗的光照条件下光敏性强的特性。鳜自身的形态特征也非常符合其偷袭型的捕食行为,侧扁的身体以及头部正上方明显的“裂头”颜色构型,有利于迷惑和靠近猎物[41]。口裂是影响鳜捕食的一个非常重要的因素,鳜仔稚鱼所摄食饵料的最适规格为其口裂宽度的20%~50%[46-47]。同时,鳃耙与鱼类的食性密切相关。一般来说,鳃耙越密越有利于鱼类滤食浮游生物。鳜科鱼类仅有4~9个鳃耙,其数量少于其他鱼类。He等[48]发现,翘嘴鳜的鳃耙发育相关基因外异蛋白A受体基因 (ectodysplasin A receptor, EDAR) 的表达量较低,且骨形态发生蛋白4基因 (bone morphogenetic protein 4, BMP4) 的高表达能够显著抑制EDAR的表达和鳃耙发育,这在一定角度揭示了翘嘴鳜鳃耙数量少且摄食凶猛的分子机制。

    • 已有研究表明,鱼类摄食调控机制与哺乳动物相比具有一定的保守性,主要受到内分泌因子的调控。下丘脑内分泌因子如神经肽Y(neuropeptide Y, NPY)、黑皮质素(melanocortin)及食欲肽(orexins)等和胃肠内分泌因子如缩胆囊素(cholecystokinin, CCK)、胃泌素释放肽(gastrin-releasing peptide, GRP)、胰多肽(pancreatic polypeptide, PP)和胰高血糖素样肽(glucagon-like peptide 1, GLP-1)等在鱼类摄食调控中起着重要的作用[49]

      Liang等[50]通过基因功能域分析发现,神经肽 (NPY) 可能参与到瘦素和皮质醇对鳜摄食的调控作用中。窦亚琪等[51]在鳜胃蛋白酶基因 (pepsinogen, PEP) 和生长激素基因 (growth hormone, GH) 中鉴定出与驯食性状呈显著关联的单核苷酸多态性(single nucleotide polymorphism, SNP)分子标记,发现Genotype1 (CT, CC/CT/TT, AA, AA, TT)、Genotype2 (TT, CC/CT/TT, AA, AA, TT)和Genotype3 (TT, CC, AA, AA, TT) 这3种基因型与驯食性状表型显著相关,其中Genotype2相关性最高,可作为最优基因型个体进行选育。同时,Dou等[28]发现,味觉1受体1基因 (taste 1 receptor member1, T1R1) 的DNA甲基化在调控鳜从活饵转食死鱼的过程中具有潜在的作用;Peng等[52]发现,鳜可通过学习相关基因[即刻早期基因 (c-fos)]与食欲调控关键基因[前阿片黑素原细胞皮质激素基因 (Pro-opiomelanocortin, POMC)]之间的相互作用,发挥其“学习记忆”能力,提高鳜食物摄入和驯化的速率。张真等[53]发现多肽YY对鳜摄食的抑制作用,谢爽等[54]通过向脑室注射等方法发现,γ-氨基丁酸-A型受体拮抗剂能够抑制γ-氨基丁酸(gamma-aminobutyric acid, GABA)与其受体结合从而抑制翘嘴鳜摄食。He等[55]通过转录组测序和数字基因表达谱,比较分析了杂交鳜(S. chuatsi ♀ × S. scherzeri ♂)子一代中可摄食死饵料鱼个体和仅摄食活饵个体中的差异基因表达情况。结果发现,对可摄食死鱼的鳜而言,细胞视黄醇结合蛋白基因 (cellular retinol binding protein, CRBP)、视网膜G蛋白耦合受体基因 (retinal g protein coupled receptor, RGR) 及全反式视黄醇脱氢酶基因 (all-trans-retinol dehydrogenase, RDH8) 的表达量升高,且鸟苷酸环化酶基因 (guanylate cyclase, GC) 表达量降低,明显地提高了杂交鳜的趋光性,改善其视觉能力;生物钟基因(Period1和Period2)、酪蛋白激酶基因 (Casein kinase, CK)、生物钟调控蛋白基因 (nocturnin) 及孤儿核受体基因 (Rev-erbα)表达量的改变会导致昼夜节律的重置;促食欲因子基因 (NPY)、生长激素基因 (growth hormone, GH) 和脑啡肽基因 (proenkephalin) 表达量降低,而抑制食欲因子基因 (POMC)、多肽YY激素基因 (peptide YY, PYY)和胰岛素基因 (insulin)表达量升高,降低食欲;学习记忆相关基因cAMP效应元件结合蛋白基因 (cyclic AMP-response element-binding protein, CREB)、即刻早期基因 (c-fos)、CCAAT增强子结合蛋白基因 (CCAAT enhancer binding protein, C/EBP)、脑衍生神经营养因子基因 (brain-derived neurotrophic fractor, BDNF)及突触结合蛋白基因 (synaptotagmin,SYT) 的表达量显著下降,降低了其对自然食物偏好(活饵)的记忆保留能力;此外,单核苷酸多态性明显升高。上述结果意味着视网膜感光性、昼夜节律、食欲控制、学习和记忆等通路及SNP丰度在影响鳜摄食行为中起着重要的作用。朱强胜等[56]通过脑室注射,比较研究了6种必需氨基酸在短期内对翘嘴鳜摄食调控的影响。结果发现,组氨酸与精氨酸均可明显提高翘嘴鳜的摄食量,但其调控摄食的机制不同:组氨酸可以激活鳜脑雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信号通路,上调胃饥饿素 (ghrelin) 的表达,进而促进摄食。然而,精氨酸可能不是通过鳜脑mTOR信号通路来调控摄食的。

    4.   展望
    • 目前,对于鳜的摄食机制已有一定研究,并在一定角度揭示了其摄食活饵的内在机制。通过解析环境因子和饵料性质的变化对鳜摄食的影响,已逐渐摸索出一套驯化鳜摄食配合饲料的方案。诸多企事业单位已陆续开展驯化鳜摄食配合饲料工作,然而驯饵成功率偏低且不稳定。同时,鳜摄食配合饲料后往往会表现出食欲不振、生长减缓等系列问题。针对上述问题,应继续深入探究鳜摄食调控机制,通过人工干预的手段提高其转饵成功率。鳜摄食习性独特且对其营养生理的研究几近空白,可缺乏满足其营养生理特性的配合饲料,在养殖生产中仍极大的依赖于传统的鲜活饵料。应从鳜消化生理特性入手,开展消化率实验判定不同原料的营养价值,构建鳜原料数据库。在此基础上,充实鳜对饲料中必需营养物质如蛋白质、氨基酸、脂肪、碳水化合物、维生素及矿物质的需求量研究,以实现满足鳜营养生理特性的配合饲料的突破。

Reference (56)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return