Citation: | LÜ Zhenli, HUANG Xiaowen, SUN Fengzhi, XING Qiang, WANG Jing, LIU Pingping, AN Xingjian, LÜ Jia. Genome-wide identification and expression profiling of the AMPK gene family in Patinopecten yessoensis[J]. Journal of fisheries of china, 2024, 48(10): 109103. DOI: 10.11964/jfc.20220913709 |
As the center of cellular energy regulation in eukaryotic cells, AMPK senses and maintains energy balance in peripheral tissues by modulating various metabolic pathways. It plays a vital role in regulating the body's physiological activities and maintaining the body's homeostasis. Although the AMPK gene family has been extensively studied, systematic identification and analysis of the AMPK gene family in Patinopecten yessoensis are still lacking. In order to understand the characteristics, evolution and biological function of the AMPK gene family in P. yessoensis, we conducted genome-wide identification and functional and evolutionary analysis of the AMPK gene family in P. yessoensis. We also investigated the expression profiling of the AMPK gene family under heat stress. The results showed that three AMPK genes were identified in the genome of P. yessoensis including PyAMPKα, PyAMPKβ and PyAMPKγ, which were necessary subunits to form the AMPK complex. Spatiotemporal expression profiling suggested that three AMPK genes have relatively high expression level before the D-shaped larval stage. The PyAMPKα, PyAMPKβ and PyAMPKγ genes exhibited the highest expression level at the fertilized egg stage, blastocyst stage, and the fertilized egg and 2-8 cell stage, respectively. PyAMPK had distinct expression patterns in various adult tissues with the highest expression in kidney, followed by gill. Furthermore, we found the expression levels of all three AMPK genes in the kidney and gill increased first and then decreased over time in the group under the heat stress. Our study results showed that the AMPK genes not only regulated energy balance at early embryo development in scallops, but also participated in the response to heat stress. This study would benefit for understanding the function and evolution of AMPK gene in molluscs, and laid the foundation for further research on the regulation mechanism in response to heat stress in molluscs.
[1] |
Herzig S, Shaw R J. AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nature Reviews Molecular Cell Biology, 2018, 19(2): 121-135. doi: 10.1038/nrm.2017.95
|
[2] |
Hardie D G, Ross F A, Hawley S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis[J]. Nature Reviews Molecular Cell Biology, 2012, 13(4): 251-262. doi: 10.1038/nrm3311
|
[3] |
Carling D, Zammit V A, Hardie D G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis[J]. FEBS Letters, 1987, 223(2): 217-222. doi: 10.1016/0014-5793(87)80292-2
|
[4] |
Munday M R, Campbell D G, Carling D, et al. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase[J]. European Journal of Biochemistry, 1988, 175(2): 331-338. doi: 10.1111/j.1432-1033.1988.tb14201.x
|
[5] |
Bultot L, Guigas B, Von Wilamowitz-Moellendorff A, et al. AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase[J]. Biochemical Journal, 2012, 443(1): 193-203. doi: 10.1042/BJ20112026
|
[6] |
Inoki K, Zhu T Q, Guan K L. TSC2 mediates cellular energy response to control cell growth and survival[J]. Cell, 2003, 115(5): 577-590. doi: 10.1016/S0092-8674(03)00929-2
|
[7] |
Gwinn D M, Shackelford D B, Egan D F, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint[J]. Molecular Cell, 2008, 30(2): 214-226. doi: 10.1016/j.molcel.2008.03.003
|
[8] |
Wu N, Zheng B, Shaywitz A, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1[J]. Molecular Cell, 2013, 49(6): 1167-1175. doi: 10.1016/j.molcel.2013.01.035
|
[9] |
Kim J H, Park J M, Yea K, et al. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake[J]. PLoS One, 2010, 5(3): e9600. doi: 10.1371/journal.pone.0009600
|
[10] |
Ahmadian M, Abbott M J, Tang T Y, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype[J]. Cell Metabolism, 2011, 13(6): 739-748. doi: 10.1016/j.cmet.2011.05.002
|
[11] |
Bento C F, Renna M, Ghislat G, et al. Mammalian autophagy: how does it work?[J]. Annual Review of Biochemistry, 2016, 85: 685-713. doi: 10.1146/annurev-biochem-060815-014556
|
[12] |
McGarry J D, Leatherman G F, Foster D F. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA[J]. The Journal of Biological Chemistry, 1978, 253(12): 4128-4136. doi: 10.1016/S0021-9258(17)34693-8
|
[13] |
Saggerson D. Malonyl-CoA, a key signaling molecule in mammalian cells[J]. Annual Review of Nutrition, 2008, 28: 253-272. doi: 10.1146/annurev.nutr.28.061807.155434
|
[14] |
Bergeron R, Ren J M, Cadman K S, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis[J]. American Journal of Physiology-Endocrinology and Metabolism, 2001, 281(6): E1340-E1346. doi: 10.1152/ajpendo.2001.281.6.E1340
|
[15] |
Toyama E Q, Herzig S, Courchet J, et al. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress[J]. Science, 2016, 351(6270): 275-281. doi: 10.1126/science.aab4138
|
[16] |
Egan D F, Shackelford D B, Mihaylova M M, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy[J]. Science, 2011, 331(6016): 456-461. doi: 10.1126/science.1196371
|
[17] |
Carling D, Mayer F V, Sanders M J, et al. AMP-activated protein kinase: nature's energy sensor[J]. Nature Chemical Biology, 2011, 7(8): 512-518. doi: 10.1038/nchembio.610
|
[18] |
Hudson E R, Pan D A, James J, et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias[J]. Current Biology, 2003, 13(10): 861-866. doi: 10.1016/S0960-9822(03)00249-5
|
[19] |
Xiao B, Heath R, Saiu P, et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase[J]. Nature, 2007, 449(7161): 496-500. doi: 10.1038/nature06161
|
[20] |
Zeng L, Liu B, Wu C W, et al. Molecular characterization and expression analysis of AMPK α subunit isoform genes from Scophthalmus maximus responding to salinity stress[J]. Fish Physiology and Biochemistry, 2016, 42(6): 1595-1607. doi: 10.1007/s10695-016-0243-1
|
[21] |
Dong Y W, Han G D, Huang X W. Stress modulation of cellular metabolic sensors: interaction of stress from temperature and rainfall on the intertidal limpet Cellana toreuma[J]. Molecular Ecology, 2014, 23(18): 4541-4554. doi: 10.1111/mec.12882
|
[22] |
Jost J A, Keshwani S S, Abou-Hanna J J. Activation of AMP-activated protein kinase in response to temperature elevation shows seasonal variation in the zebra mussel, Dreissena polymorpha[J]. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 2015, 182: 75-83.
|
[23] |
Jiang W W, Li J Q, Gao Y P, et al. Effects of temperature change on physiological and biochemical responses of Yesso scallop, Patinopecten yessoensis[J]. Aquaculture, 2016, 451: 463-472. doi: 10.1016/j.aquaculture.2015.10.012
|
[24] |
Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool[J]. Journal of Molecular Biology, 1990, 215(3): 403-410. doi: 10.1016/S0022-2836(05)80360-2
|
[25] |
Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020[J]. Nucleic Acids Research, 2021, 49(D1): D458-D460. doi: 10.1093/nar/gkaa937
|
[26] |
Bjellqvist B, Hughes G J, Pasquali C, et al. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences[J]. Electrophoresis, 1993, 14(1): 1023-1031. doi: 10.1002/elps.11501401163
|
[27] |
Liu W Z, Xie Y B, Ma J Y, et al. IBS: an illustrator for the presentation and visualization of biological sequences[J]. Bioinformatics, 2015, 31(20): 3359-3361. doi: 10.1093/bioinformatics/btv362
|
[28] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
|
[29] |
Larkin M A, Blackshields G, Brown N P, et al. Clustal W and clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948. doi: 10.1093/bioinformatics/btm404
|
[30] |
Wang S, Zhang J B, Jiao W Q, et al. Scallop genome provides insights into evolution of bilaterian karyotype and development[J]. Nature Ecology & Evolution, 2017, 1(5): 0120.
|
[31] |
张景山. 关于改进虾夷扇贝养殖技术的探讨[J]. 水产科学, 1999, 18(3): 46. doi: 10.16378/j.cnki.1003-1111.1999.03.014
Zhang J S. Study on improving the culture technology of Patinopecten yessoensis[J]. Fisheries Science, 1999, 18(3): 46 (in Chinese). doi: 10.16378/j.cnki.1003-1111.1999.03.014
|
[32] |
Hu X L, Bao Z M, Hu J J, et al. Cloning and characterization of tryptophan 2, 3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston 1904)[J]. Aquaculture Research, 2006, 37(12): 1187-1194. doi: 10.1111/j.1365-2109.2006.01546.x
|
[33] |
Santerre C, Sourdaine P, Marc N, et al. Oyster sex determination is influenced by temperature-first clues in spat during first gonadic differentiation and gametogenesis[J]. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 2013, 165(1): 61-69.
|
[34] |
Li Y P, Zhang L L, Sun Y, et al. Transcriptome sequencing and comparative analysis of ovary and testis identifies potential key sex-related genes and pathways in scallop Patinopecten yessoensis[J]. Marine Biotechnology, 2016, 18(4): 453-465. doi: 10.1007/s10126-016-9706-8
|
[35] |
Guévélou E, Huvet A, Galindo-Sánchez C E, et al. Sex-specific regulation of AMP-activated protein kinase (AMPK) in the Pacific oyster Crassostrea gigas[J]. Biology of Reproduction, 2013, 89(4): 100.
|
[36] |
Zhang G F, Fang X D, Guo X M, et al. The oyster genome reveals stress adaptation and complexity of shell formation[J]. Nature, 2012, 490(7418): 49-54. doi: 10.1038/nature11413
|
[37] |
Kimelman D, Griffin K J P. Mesoderm induction: a postmodern view[J]. Cell, 1998, 94(4): 419-421. doi: 10.1016/S0092-8674(00)81582-2
|
[38] |
Sanz P, Rubio T, Garcia-Gimeno M A. AMPKbeta subunits: more than just a scaffold in the formation of AMPK complex[J]. FEBS Journal, 2013, 280(16): 3723-3733. doi: 10.1111/febs.12364
|
[39] |
Lian S S, Wang J, Zhang L L, et al. Integration of biochemical, cellular, and genetic indicators for understanding the aging process in a bivalve mollusk Chlamys farreri[J]. Marine Biotechnology, 2019, 21(5): 718-730. doi: 10.1007/s10126-019-09917-7
|
[40] |
Wang J T, Fang L, Wu Q D, et al. Genome-wide identification and characterization of the AMPK genes and their distinct expression patterns in response to air exposure in the Manila clam (Ruditapes philippinarum)[J]. Genes & Genomics, 2020, 42(1): 1-12.
|
[41] |
Trevisan R, Mello D F, Delapedra G, et al. Gills as a glutathione-dependent metabolic barrier in Pacific oysters Crassostrea gigas: Absorption, metabolism and excretion of a model electrophile[J]. Aquatic Toxicology, 2016, 173: 105-119. doi: 10.1016/j.aquatox.2016.01.008
|
[42] |
Roepstorff C, Thiele M, Hillig T, et al. Higher skeletal muscle α2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise[J]. The Journal of Physiology, 2006, 574(1): 125-138. doi: 10.1113/jphysiol.2006.108720
|
[43] |
周凯. 高温胁迫下虾夷扇贝GSK-3β调节糖代谢和细胞凋亡的功能研究[D]. 大连: 大连海洋大学, 2022.
Zhou K. Study on the function of GSK-3β in regulating glucose metabolism and apoptosis under high temperature stress in Yesso scallop (Patinopecten yessoensis)[D]. Dalian: Dalian Ocean University, 2022 (in Chinese).
|
[44] |
Adamo S A. How should behavioural ecologists interpret measurements of immunity?[J]. Animal Behaviour, 2004, 68(6): 1443-1449. doi: 10.1016/j.anbehav.2004.05.005
|
[45] |
邓伟. 温度胁迫对多鳞白甲鱼AMPK介导的能量稳态及脂肪酸代谢的影响[D]. 咸阳: 西北农林科技大学, 2019.
Deng W. Influence of temperature stress on the AMPK-mediated energy homeostasis and fatty acid metabolism in Onychostoma macrolepis[D]. Xianyang: Northwest A&F University, 2019 (in Chinese).
|
[46] |
李亚丹. 秀丽隐杆线虫14-3-3蛋白FTT-2及AMPK蛋白AAK-2对热抗性调控作用的研究[D]. 厦门: 厦门大学, 2014.
Li Y D. The study of C. elegans 14-3-3 protein FTT-2 and AMPK protein AAK-2 function in heat stress resistance[D]. Xiamen: Xiamen University, 2014 (in Chinese).
|
[47] |
Frederich M, O'Rourke M R, Furey N B, et al. AMP-activated protein kinase (AMPK) in the rock crab, Cancer irroratus: an early indicator of temperature stress[J]. Journal of Experimental Biology, 2009, 212(Pt 5): 722-730.
|
[48] |
刘超, 吴富村, 林思恒, 等. 高温刺激导致虾夷扇贝死亡因素的探究[J]. 海洋科学, 2016, 40(11): 91-98. doi: 10.11759/hykx20151008001
Liu C, Wu F C, Lin S H, et al. Pilot study on reasons for yesso scallop’s (Patinopecten yessoensis) survival after heat shock[J]. Marine Sciences, 2016, 40(11): 91-98 (in Chinese). doi: 10.11759/hykx20151008001
|