Citation: | GAO Yuntao, GAO Yunhong, LI Mingyue, WANG Jiawei, MENG Zhen, GUAN Changtao, JIA Yudong. Hypoxia tolerance and alternation of hematology and gill morphology in black rockfish (Sebastes schlegelii)[J]. Journal of fisheries of china, 2023, 47(9): 099603. DOI: 10.11964/jfc.20210813028 |
Dissolved oxygen is an important environmental factor affecting the survival of fish. In this study, the value of dissolved oxygen at critical oxygen partial pressure (Pcrit) and loss of equilibrium (LOE), respiratory rate, plasma cortisol, glucose, white blood cell (WBC), red blood cell (RBC), hemoglobin (Hb), hematocrit (HCT) and the alternation of gill morphology and related parameters [lamellar length (SLL) and width (SLW), interlamellar distance (ID) and perimeter] as well as the proportion of secondary lamellae available for gas exchange (PAGE) were observed during hypoxia to illustrate hypoxia tolerance, physio-biological response and morphological changes in the gills of Sebastes schlegelii during hypoxia stress. Results showed that the value of dissolved oxygen at Pcrit and LOE of S. schlegelii at (88.01±5.34) g were (3.96±0.11) mg/L and (2.60±0.21) mg/L respectively under the condition of water temperature (15.6±0.2) °C, pH value 7.85, and salinity 30.0. The PAGE and respiratory frequency increased first and then decreased, the highest value respectively obtained at Pcrit and LOE (P<0.05) throughout hypoxia stress. Meanwhile, plasma cortisol and glucose levels significantly increased, the highest values observed at LOE andPcrit (P<0.05). In blood physiology, Hb, HCT, WBC similar results like plasma cortisol, with the highest value at LOE (P<0.05), whereas RBC remained unchanged during hypoxia stress. Besides, the SLL, ID, Perimeter of gills increased significantly during hypoxia stress, and reached the maximum value at LOE point (P<0.05) either; the SLW decreased and reached the minimum value at the LOE (P<0.05). At the same time, the clubbing, hypertrophy, hyperplasia and epithelial cell edema were observed in the secondary lamella. All the aforementioned parameters recovered to normal levels after re-oxygenation 24 h inS. schlegelii. In conclusion, S. schlegelii are sensitive to low dissolved oxygen, have numbers of changes in hematology and morphology for hypoxia stress and reduce hypoxia stress after reoxygenation treatment for 24 h. These findings expand current knowledge on hypoxia tolerance and help in the management of S. schlegeli in captivity.
[1] |
石华洪, 苗亮, 李明云, 等. 水体低氧对香鱼幼鱼生长和消化酶活性的影响[J]. 生命科学研究, 2019, 23(6): 469-475. doi: 10.16605/j.cnki.1007-7847.2019.06.006
Shi H H, Miao L, Li M Y, et al. Effects of hypoxia on growth and activities of digestive enzymes of juvenile sweet fish (Plecoglossus altivelis)[J]. Life Science Research, 2019, 23(6): 469-475 (in Chinese). doi: 10.16605/j.cnki.1007-7847.2019.06.006
|
[2] |
Xia J H, Li H L, Li B J, et al. Acute hypoxia stress induced abundant differential expression genes and alternative splicing events in heart of tilapia[J]. Gene, 2018, 639: 52-61. doi: 10.1016/j.gene.2017.10.002
|
[3] |
张安杰. 两种生境不完全重叠的鲤科鱼类耐低氧及运动能力的比较[D]. 重庆: 重庆师范大学, 2014.
Zhang A J. Comparison of hypoxia tolerance and locomotor performance in two cyprinids with incompletely overlapped habitat[D]. Chongqing: Chongqing Normal University, 2014 (in Chinese).
|
[4] |
钱辰颖. 低氧和高氧对团头鲂F5新品系鳃组织形态变化及各组织酶活性的影响[D]. 上海: 上海海洋大学, 2020.
Qian C Y. Effects of hypoxia and hypoxia on the morphological changes of gill and enzyme activity of tissues in the new strain F5 of Megalobrama amblycephala[J]. Shanghai: Shanghai Ocean University, 2020 (in Chinese).
|
[5] |
宋银都, 唐首杰, 赵金良. 鳜幼鱼窒息点、耗氧率的初步研究[J]. 水产养殖, 2019, 40(3): 3-5.
Song Y D, Tang S J, Zhao J L. A preliminary study on suffocation point and oxygen consumption rate of juvenile fish[J]. Journal of Aquaculture, 2019, 40(3): 3-5 (in Chinese).
|
[6] |
胡发文, 王晓龙, 高凤祥, 等. 温度、盐度和两种麻醉剂对大泷六线鱼幼鱼耗氧率、排氨率的影响[J]. 海洋科学, 2021, 45(1): 54-61.
Hu F W, Wang X L, Gao F X, et al. Influence of temperature, salinity, and anesthetics on the oxygen consumption and ammonia excretion rates in fat greenling (Hexagrammos otakii) juveniles[J]. Marine Sciences, 2021, 45(1): 54-61 (in Chinese).
|
[7] |
Vaquer-Sunyer R, Duarte C M. Thresholds of hypoxia for marine biodiversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15452-15457. doi: 10.1073/pnas.0803833105
|
[8] |
刘淑兰, 翟少伟. 氧化应激对鱼类的影响及其模型的研究进展[J]. 饲料博览, 2012(2): 48-51. doi: 10.3969/j.issn.1001-0084.2012.02.020
Liu S L, Zhai S W. Research progress of effects of oxidative stress on fish and oxidative stress model[J]. Feed Review, 2012(2): 48-51 (in Chinese). doi: 10.3969/j.issn.1001-0084.2012.02.020
|
[9] |
李洁. 限制溶解氧供应对褐牙鲆幼鱼生长的影响及其机制的实验研究[D]. 青岛: 中国海洋大学, 2011.
Li J. Effects of restricted the supply of dissolved oxygen on the growth of juvenile brown flounder, Paralichthys olivaceus and the mechanism[D]. Qingdao: Ocean University of China, 2011 (in Chinese).
|
[10] |
区又君, 范春燕, 李加儿, 等. 急性低氧胁迫对卵形鲳鲹选育群体血液生化指标的影响[J]. 海洋学报, 2014, 36(4): 126-131.
Ou Y J, Fan C Y, Li J E, et al. Acute hypoxia stress on blood biochemical indexes in selective group of Trachinotus ovatus[J]. Acta Oceanologica Sinica, 2014, 36(4): 126-131 (in Chinese).
|
[11] |
史丹, 温海深, 杨艳平. 许氏平鲉卵巢发育的周年变化研究[J]. 中国海洋大学学报, 2011, 41(9): 25-30.
Shi D, Wen H S, Yang Y P. The annual change of ovarian development in female Sebastes schlegelii[J]. Periodical of Ocean University of China, 2011, 41(9): 25-30 (in Chinese).
|
[12] |
严全根, 解绶启, 雷武, 等. 许氏平鲉幼鱼的赖氨酸需求量[J]. 水生生物学报, 2006, 30(4): 459-465. doi: 10.3321/j.issn:1000-3207.2006.04.015
Yan Q G, Xie S Q, Lei W, et al. Quantitative dietary lysine requirement for juvenile Sebastes schlegelii[J]. Acta Hydrobiologica Sinica, 2006, 30(4): 459-465 (in Chinese). doi: 10.3321/j.issn:1000-3207.2006.04.015
|
[13] |
席丹. 许氏平鲉(Sebastes schlegelii)早期发育生长模式与自残行为研究[D]. 青岛: 中国海洋大学, 2014.
Xi D. Growth pattern and cannibalism in black rockfish (Sebastes schlegelii) during early development stage[D]. Qingdao: Ocean University of China, 2014 (in Chinese).
|
[14] |
Abdel-Tawwab M, Monier M N, Hoseinifar S H, et al. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers[J]. Fish Physiology and Biochemistry, 2019, 45(3): 997-1013. doi: 10.1007/s10695-019-00614-9
|
[15] |
Xu S S, Zhao L L, Xiao S J, et al. Whole genome resequencing data for three rockfish species of sebastes[J]. Scientific Data, 2019, 6(1): 97. doi: 10.1038/s41597-019-0100-z
|
[16] |
Min S, Zhao J, Wen H S, et al. The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii)[J]. PLoS One, 2019, 14(5): e0217133. doi: 10.1371/journal.pone.0217133
|
[17] |
Jeon J, Lim H K, Kannan K, et al. Effect of perfluorooctanesulfonate on osmoregulation in marine fish, Sebastes schlegeli, under different salinities[J]. Chemosphere, 2010, 81(2): 228-234. doi: 10.1016/j.chemosphere.2010.06.037
|
[18] |
张亚晨, 蔺玉珍, 温海深, 等. 溶解氧对许氏平鮋血细胞和血清生化组分的影响[EB/OL]. 北京: 中国科技论文在线, 2013. http://www.paper.edu.cn/releasepaper/content/201309-210.
Zhang Y C, Lin Y Z, Wen H S, et al. Effect of dissolved oxygen on blood cells and serum biochemical components of Sebastes schlegelii[EB/OL]. Beijing: Chinese Science Paper Online, 2013. http://www.paper.edu.cn/releasepaper/content/201309-210 (in Chinese).
|
[19] |
Mu W J, Wen H S, Li J F, et al. Cloning and expression analysis of a HSP70 gene from Korean rockfish (Sebastes schlegeli)[J]. Fish & Shellfish Immunology, 2013, 35(4): 1111-1121.
|
[20] |
Rogers N J, Urbina M A, Reardon E E, et al. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit)[J]. Conservation Physiology, 2016, 4(1): cow012. doi: 10.1093/conphys/cow012
|
[21] |
Nero V, Farwell A, Lister A, et al. Gill and liver histopathological changes in yellow perch (Perca flavescens) and goldfish (Carassius auratus) exposed to oil sands process-affected water[J]. Ecotoxicology and Environmental Safety, 2006, 63(3): 365-377. doi: 10.1016/j.ecoenv.2005.04.014
|
[22] |
陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响[J]. 动物学杂志, 2016, 51(6): 1049-1058.
Chen S X, Wang P F, Ou Y J, et al. The effect of acute and chronic hypoxia stress on liver tissue structure and oxidation in juvenile golden pompano (Trachinotus ovatus)[J]. Chinese Journal of Zoology, 2016, 51(6): 1049-1058 (in Chinese).
|
[23] |
阮雯, 纪炜炜, 郑亮, 等. 鱼类低氧胁迫及营养调控和应对研究进展[J]. 海洋渔业, 2020, 42(6): 751-761. doi: 10.13233/j.cnki.mar.fish.2020.06.011
Ruan W W, Ji W W, Zheng L, et al. On hypoxia stress in fish and its nutritional regulation and response[J]. Marine Fisheries, 2020, 42(6): 751-761 (in Chinese). doi: 10.13233/j.cnki.mar.fish.2020.06.011
|
[24] |
赵文文, 曹振东, 付世建. 溶氧水平对鳊鱼、中华倒刺鲃幼鱼游泳能力的影响[J]. 水生生物学报, 2013, 37(2): 314-320. doi: 10.7541/2013.20
Zhao W W, Cao Z D, Fu S J. The effects of dissolved oxygen level on the swimming performances of juvenile Parabramis pekinensis and Spinibarbus sinensis[J]. Acta Hydrobiologica Sinica, 2013, 37(2): 314-320 (in Chinese). doi: 10.7541/2013.20
|
[25] |
沈旭明, 赵清良. 温度、溶解氧对暗纹东方鲀幼鱼呼吸频率的影响[J]. 生态学杂志, 2001, 20(4): 13-15.
Shen X M, Zhao Q L. The effects of water temperature and DO on the respiratory rates of immature Fugu obscurus[J]. Chinese Journal of Ecology, 2001, 20(4): 13-15 (in Chinese).
|
[26] |
杨凯. 溶氧水平对黄颡鱼生长、代谢及氧化应激的影响[D]. 武汉: 华中农业大学, 2010.
Yang K. Effects of dissolved oxygen on the growth, metabolism and oxidative stress of Pelteobagrus fulvidraco richardson[D]. Wuhan: Huazhong Agricultural University, 2010 (in Chinese).
|
[27] |
吴志昊. Fe(Ⅱ)、DO含量对养殖大菱鲆幼鱼生理学性状影响的研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2011.
Wu Z H. Physiological effects of Fe(Ⅱ) and DO on juvenile turbot Scophthalmus maximus[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011 (in Chinese).
|
[28] |
杨明阳. 低氧和高氧对斑马鱼胚胎心血管发育的影响[D]. 重庆: 西南大学, 2017.
Yang M Y. The influence of hypoxia and hyperoxia on cardiovascular development in zebrafish embryo[D]. Chongqing: Southwest University, 2017 (in Chinese).
|
[29] |
Ultsch G R, Boschung H, Ross M J. Metabolism, critical oxygen tension, and habitat selection in darters (Etheostoma)[J]. Ecology, 1978, 59(1): 99-107. doi: 10.2307/1936635
|
[30] |
Shingles A, McKenzie D J, Claireaux G, et al. Reflex cardioventilatory responses to hypoxia in the flathead gray mullet (Mugil cephalus) and their behavioral modulation by perceived threat of predation and water turbidity[J]. Physiological and Biochemical Zoology, 2005, 78(5): 744-755. doi: 10.1086/432143
|
[31] |
Claireaux G, Chabot D. Responses by fishes to environmental hypoxia: integration through fry's concept of aerobic metabolic scope[J]. Journal of Fish Biology, 2016, 88(1): 232-251. doi: 10.1111/jfb.12833
|
[32] |
Candebat C L, Booth M, Williamson J E, et al. The critical oxygen threshold of yellow tail kingfish (Seriola lalandi)[J]. Aquaculture, 2020, 516: 734519. doi: 10.1016/j.aquaculture.2019.734519
|
[33] |
Speers-Roesch B, Mandic M, Groom D J E, et al. Critical oxygen tensions as predictors of hypoxia tolerance and tissue metabolic responses during hypoxia exposure in fishes[J]. Journal of Experimental Marine Biology and Ecology, 2013, 449: 239-249. doi: 10.1016/j.jembe.2013.10.006
|
[34] |
Shimps E L, Rice J A, Osborne J A. Hypoxia tolerance in two juvenile estuary-dependent fishes[J]. Journal of Experimental Marine Biology and Ecology, 2005, 325(2): 146-162. doi: 10.1016/j.jembe.2005.04.026
|
[35] |
Barnes R, King H, Carter C G. Hypoxia tolerance and oxygen regulation in Atlantic salmon, Salmo salar from a Tasmanian population[J]. Aquaculture, 2011, 318(3-4): 397-401. doi: 10.1016/j.aquaculture.2011.06.003
|
[36] |
Jia Y D, Wang J W, Gao Y T, et al. Hypoxia tolerance, hematological, and biochemical response in juvenile turbot (Scophthalmus maximus L.)[J]. Aquaculture, 2021, 535: 736380. doi: 10.1016/j.aquaculture.2021.736380
|
[37] |
付世建, 曹振东, 彭姜岚. 急性低温胁迫对南方鲇幼鱼耗氧率和呼吸频率的影响[J]. 水利渔业, 2008, 28(3): 46-48. doi: 10.3969/j.issn.1003-1278.2008.03.017
Fu S J, Cao Z D, Peng J L. Effects of acute low temperature stress on oxygen consumption rate and respiratory rate of juvenile southern catfish[J]. Reservoir Fisheries, 2008, 28(3): 46-48 (in Chinese). doi: 10.3969/j.issn.1003-1278.2008.03.017
|
[38] |
杨志强, 李潇轩, 韩飞. 锦鲤的耗氧率和窒息点[J]. 江苏农业科学, 2019, 47(1): 174-176.
Yang Z Q, Li X X, Han F. Oxygen consumption rate and asphyxiation point of koi carp[J]. Jiangsu Agricultural Sciences, 2019, 47(1): 174-176 (in Chinese).
|
[39] |
Zhang W, Cao Z D, Peng J L, et al. The effects of dissolved oxygen level on the metabolic interaction between digestion and locomotion in juvenile southern catfish (Silurus meridionalis Chen)[J]. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 2010, 157(3): 212-219.
|
[40] |
王志飞, 左鹏翔, 冷云, 等. 秀丽高原鳅幼鱼窒息点与耗氧率的研究[J]. 黑龙江水产, 2019(2): 42-45. doi: 10.3969/j.issn.1674-2419.2019.02.017
Wang Z F, Zuo P X, Leng Y, et al. Study of the asphyxiation point and oxygen consumption rate of juvenile Triplophysa venusta[J]. Heilongjiang Fisheries, 2019(2): 42-45 (in Chinese). doi: 10.3969/j.issn.1674-2419.2019.02.017
|
[41] |
孙宝柱, 黄浩, 曹文宣, 等. 厚颌鲂和圆口铜鱼耗氧率与窒息点的测定[J]. 水生生物学报, 2010, 34(1): 88-93.
Sun B Z, Huang H, Cao W X, et al. Studies on the oxygen consumption rate and asphyxiant point of Megalobrama pellegrini and Coreius guichcnoti[J]. Acta Hydrobiologica Sinica, 2010, 34(1): 88-93 (in Chinese).
|
[42] |
Flik G, Klaren P H M, Van Den Burg E H, et al. CRF and stress in fish[J]. General and Comparative Endocrinology, 2006, 146(1): 36-44. doi: 10.1016/j.ygcen.2005.11.005
|
[43] |
Pichavant K, Maxime V, Thébault M T, et al. Effects of hypoxia and subsequent recovery on turbot Scophthalmus maximus: hormonal changes and anaerobic metabolism[J]. Marine Ecology-Progress Series, 2002, 225: 275-285. doi: 10.3354/meps225275
|
[44] |
温海深, 吕里康, 李兰敏, 等. 急性高温胁迫对雄性许氏平鲉血液生理生化及相关基因表达的影响[J]. 中国海洋大学学报, 2016, 46(11): 44-51.
Wen H S, Lü L K, Li L M, et al. Effect of temperature on physiological and biochemical parameters and gene expression of male Sebastes schlegelii[J]. Periodical of Ocean University of China, 2016, 46(11): 44-51 (in Chinese).
|
[45] |
Li M X, Wang X D, Qi C L, et al. Metabolic response of Nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress[J]. Aquaculture, 2018, 495: 187-195. doi: 10.1016/j.aquaculture.2018.05.031
|
[46] |
Jørgensen B J, Mustafa T. The effect of hypoxia on carbohydrate metabolism in flounder (Platichthys flesus L.)—Ⅰ. Utilization of glycogen and accumulation of glycolytic end products in various tissues[J]. Comparative Biochemistry and Physiology-Part B: Comparative Biochemistry, 1980, 67(2): 243-248. doi: 10.1016/0305-0491(80)90139-X
|
[47] |
van Raaij M T M, Van Den Thillart G E E J M, Vianen G J, et al. Substrate mobilization and hormonal changes in rainbow trout (Oncorhynchus mykiss, L. ) and common carp (Cyprinus carpio, L.) during deep hypoxia and subsequent recovery[J]. Journal of Comparative Physiology B, 1996, 166(7): 443-452. doi: 10.1007/BF02337889
|
[48] |
齐明, 侯懿玲, 刘韬, 等. 急性低氧胁迫和复氧恢复对青田田鱼幼鱼氧化应激和能量代谢的影响[J]. 淡水渔业, 2020, 50(6): 92-98.
Qi M, Hou Y L, Liu T, et al. The effects of acute hypoxia stress and re-oxygenation on oxidative stress and energy metabolism of juvenile Cyprinus carpio var. qingtianensis[J]. Freshwater Fisheries, 2020, 50(6): 92-98 (in Chinese).
|
[49] |
王晓雯, 朱华, 胡红霞, 等. 低氧胁迫对西伯利亚鲟幼鱼生理状态的影响[J]. 水产科学, 2016, 35(5): 459-465.
Wang X W, Zhu H, Hu H X, et al. Effects of hypoxia on physiological status of Siberian sturgeon Acipenser baeri juveniles[J]. Fisheries Science, 2016, 35(5): 459-465 (in Chinese).
|
[50] |
张曦, 付世建, 彭姜岚, 等. 急性低氧对鲫鱼幼鱼血液基础指标的影响[J]. 重庆师范大学学报(自然科学版), 2011, 28(4): 19-22.
Zhang X, Fu S J, Peng J L, et al. The effect of acute hypoxia on blood parameters of juvenile crucian carp[J]. Journal of Chongqing Normal University (Natural Science Edition), 2011, 28(4): 19-22 (in Chinese).
|
[51] |
李欣茹. 低氧胁迫对暗纹东方鲀能量代谢、血液指标及基因表达的影响[D]. 南京: 南京师范大学, 2018.
Li X R. Effects of hypoxia stress on energy metabolism, blood indexes and gene expression of Fugu obscurus[D]. Nanjing: Nanjing Normal University, 2018 (in Chinese).
|
[52] |
沈凡, 樊启学, 杨凯, 等. 不同溶氧条件下黄颡鱼免疫机能及抗病力的研究[J]. 淡水渔业, 2010, 40(4): 44-49, 55.
Shen F, Fan Q X, Yang K, et al. The immune responses of yellow catfish (Pelteobagrus fulvidraco) and its susceptibility to Aeromonas hydrophila at different dissolved oxygen levels[J]. Freshwater Fisheries, 2010, 40(4): 44-49, 55 (in Chinese).
|
[53] |
常志成, 温海深, 张美昭, 等. 溶解氧水平对花鲈幼鱼氧化应激与能量利用的影响及生理机制[J]. 中国海洋大学学报, 2018, 48(7): 20-28.
Chang Z C, Wen H S, Zhang M Z, et al. Effects of dissolved oxygen levels on oxidative stress response and energy utilization of juvenile Chinese sea bass (Lateolabrax maculatus) and associate physiological mechanisms[J]. Periodical of Ocean University of China, 2018, 48(7): 20-28 (in Chinese).
|
[54] |
Benli A Ç K, Köksal G, Özkul A. Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): effects on gill, liver and kidney histology[J]. Chemosphere, 2008, 72(9): 1355-1358. doi: 10.1016/j.chemosphere.2008.04.037
|
[55] |
Boran H, Altinok I, Capkin E. Histopathological changes induced by maneb and carbaryl on some tissues of rainbow trout, Oncorhynchus mykiss[J]. Tissue and Cell, 2010, 42(3): 158-164. doi: 10.1016/j.tice.2010.03.004
|
[56] |
Bosch-Belmar M, Giomi F, Rinaldi A, et al. Concurrent environmental stressors and jellyfish stings impair caged European sea bass (Dicentrarchus labrax) physiological performances[J]. Scientific Reports, 2016, 6: 27929. doi: 10.1038/srep27929
|
[57] |
Capaldo A, Gay F, Laforgia V. Changes in the gills of the European eel (Anguilla anguilla) after chronic exposure to environmental cocaine concentration[J]. Ecotoxicology and Environmental Safety, 2019, 169: 112-119. doi: 10.1016/j.ecoenv.2018.11.010
|
[58] |
Sollid J, Nilsson G E. Plasticity of respiratory structures-adaptive remodeling of fish gills induced by ambient oxygen and temperature[J]. Respiratory Physiology & Neurobiology, 2006, 154(1-2): 241-251.
|
[59] |
Nie X B, Zhang F, Wang T T, et al. Physiological and morphological changes in turbot (Psetta maxima) gill tissue during waterless storage[J]. Aquaculture, 2019, 508: 30-35. doi: 10.1016/j.aquaculture.2019.04.060
|
[60] |
Mitrovic D, Dymowska A, Nilsson G E, et al. Physiological consequences of gill remodeling in goldfish (Carassius auratus) during exposure to long-term hypoxia[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2009, 297(1): R224-R234. doi: 10.1152/ajpregu.00189.2009
|
[61] |
Wu C B, Liu Z Y, Li F G, et al. Gill remodeling in response to hypoxia and temperature occurs in the hypoxia sensitive blunt snout bream (Megalobrama amblycephala)[J]. Aquaculture, 2017, 479: 479-486. doi: 10.1016/j.aquaculture.2017.06.020
|
[62] |
Van Den Heuvel M R, Power M, Richards J, et al. Disease and gill lesions in yellow perch (Perca flavescens) exposed to oil sands mining-associated waters[J]. Ecotoxicology and Environmental Safety, 2000, 46(3): 334-341. doi: 10.1006/eesa.1999.1912
|
[1] | ZHOU Liqing, GE Guangyu, JING Hao, WU Zhou, SUN Xiujun, LI Jiale, WU Biao, LIU Zhihong, YANG Jinlong. Effects of dissolved oxygen changes on the gill tissue structure of Ruditapes philippinarum[J]. Journal of fisheries of china, 2024, 48(10): 109105. DOI: 10.11964/jfc.20231114218 |
[2] | ZHU Huaping, SU Jiaqi, ZHANG Zijun, ZHU Changbo, ZHANG Bo, LI Ting, CHEN Suwen. Effects of Na+/K+ ratio on growth, body composition, hepatopancreas and gill microsturucture of Litopenaeus vannamei reared in low-salinity environment[J]. Journal of fisheries of china, 2024, 48(3): 039608. DOI: 10.11964/jfc.20211013129 |
[3] | WANG Zhiyuan, LI Jinku, LI Yun, WANG Lingyu, QI Xin, LI Jifang, WEN Haishen. Expression and localization analysis of ncc and nkcc genes in gill tissues of Lateolabrax maculatus during salinity adaptation[J]. Journal of fisheries of china, 2023, 47(8): 089104. DOI: 10.11964/jfc.20220813640 |
[4] | SONG Chaowei, LI Wensheng. Progress and prospect of functional genomics studies on gills[J]. Journal of fisheries of china, 2023, 47(7): 079101. DOI: 10.11964/jfc.20220813631 |
[5] | ZHAO Liulan, TANG Xiaohong, LIAO Lei, LIANG Ji, ZHANG Dongmei, YAN Haoxiao, XIONG Chen, YANG Song. Effects of different carbohydrate levels on gill tissue structure, antioxidant capacity and immunity of Micropterus salmoides[J]. Journal of fisheries of china, 2022, 46(11): 2158-2167. DOI: 10.11964/jfc.20210412720 |
[6] | WANG Miaomiao, ZHANG Jinye, ZHAO Yuanjun. New record for Myxobolus basilamellaris in China with histopathological insights into gill infestation[J]. Journal of fisheries of china, 2021, 45(9): 1555-1562. DOI: 10.11964/jfc.20210612923 |
[7] | LIU Yang, WEN Haishen, HUANG Jiesi, LI Jifang, ZHANG Meizhao, QI Xin, LI Yun. Histological and morphological observations of the gill and swim bladder development of Lateolabrax maculatus[J]. Journal of fisheries of china, 2019, 43(12): 2476-2484. DOI: 10.11964/jfc.20180711362 |
[8] | LI Yang, XUE Suyan, LI Jiaqi, SHEN Shufang, CHEN Qionglin, JIANG Zengjie, FANG Jianguang, MAO Yuze. Effect of Cu2+ stress on physiology biochemistry and histopathological structure of Scapharca broughtonii[J]. Journal of fisheries of china, 2018, 42(10): 1531-1540. DOI: 10.11964/jfc.20170810928 |
[9] | CHEN Sihan, PENG Ruibing, HUANG Chen, ZHAO Chenxi, LI Jiangping, XUE Ruiping, JIANG Xiamin. Effects of acute ammonia exposure on histopathology of liver, gill and brain in juvenile cuttlefish (Sepia pharaonis)[J]. Journal of fisheries of china, 2018, 42(9): 1348-1357. DOI: 10.11964/jfc.20171211109 |
[10] | WANG Miao, LU Maixin, YI Mengmeng, CAO Jianmeng, GAO Fengying. The commensal microbiota structure of Nile tilapia (Oreochromis niloticus) skin and gill surfaces and preliminary study of their implications on tilapia health status[J]. Journal of fisheries of china, 2017, 41(7): 1148-1157. DOI: 10.11964/jfc.20160610460 |