• ISSN 1000-0615
  • CN 31-1283/S
LIU Mei, LIAN Qingping, NI Meng, GUO Aihuan, YUAN Julin. Effects of inner-pond raceway aquaculture on the growth performance, antioxidant enzymes, digestive enzymes, digestive tract structure, and bacterial flora of largemouth bass (Micropterus salmoides)[J]. Journal of fisheries of china, 2021, 45(12): 2011-2028. DOI: 10.11964/jfc.20210412737
Citation: LIU Mei, LIAN Qingping, NI Meng, GUO Aihuan, YUAN Julin. Effects of inner-pond raceway aquaculture on the growth performance, antioxidant enzymes, digestive enzymes, digestive tract structure, and bacterial flora of largemouth bass (Micropterus salmoides)[J]. Journal of fisheries of china, 2021, 45(12): 2011-2028. DOI: 10.11964/jfc.20210412737

Effects of inner-pond raceway aquaculture on the growth performance, antioxidant enzymes, digestive enzymes, digestive tract structure, and bacterial flora of largemouth bass (Micropterus salmoides)

Funds: Key Research and Development Program of China (2020YFD0900105); Public Welfare Key Applied Research Project of Huzhou (2019GZ17); Collaborative Agricultural Major Extension Project of Zhejiang Province (2020XTTGSC01); Huzhou Rural Revitalization Special Project of Huzhou City (2018ZD2025); Scientific Research Institutes Support Special Project of Zhejiang Province (2021YSZX006)
More Information
  • Corresponding author:

    YUAN Julin. E-mail: Yuanjulin1982@126.com

  • Received Date: April 06, 2021
  • Revised Date: May 19, 2021
  • Available Online: November 18, 2021
  • Published Date: November 30, 2021
  • The aim of this paper is to investigate the effects of inner-pond raceway aquaculture (IPRA) on the growth performance, antioxidant enzymes, digestive enzymes, digestive tract structure, and bacterial flora of Micropterus salmoides. There were four tanks in a pond with a recirculating flowing water culture, two of them were set up as the treatment group with flowing water, and the other two were set up as the control group with still water. The experiment lasted for 153 days. Relevant growth, biochemical indicators, and histomorphological structures were measured at the midway and the end of the culture period, and the microorganisms in the digestive tract were analyzed using the Illumina Miseq sequencing platform. Results showed that, ① Halfway through the culture period, the weight gain rate, specific growth rate, and condition factor of the treated group were lower than those of the control group. At the end of the culture period, the weight gain rate, specific growth rate, and condition factor of the treated group continued to decrease, although the treatment group’s survival rate was always higher than that of the control group. ② Halfway through the culture period, liver SOD and CAT in the treated group were significantly higher than those in the control group. MDA (0.16±0.01, 0.14±0.01 μmol/mg) in the treatment group was significantly lower than that in the control group (0.19±0.02, 0.21±0.02 μmol/mg), while digestive enzyme activity in the treatment group was significantly higher than that in the control group. By the end of the culture, antioxidant enzymes and digestive enzyme activity were declining to some extent, while SOD (55.11±3.91, 58.18±4.52 μmol/mg) in the treated group were still obviously higher than those (46.57±3.41, 48.84±3.62 μmol/mg) in the control group. ③ The height and density of intestinal villus in the treated group were significantly higher than those in the control group, and more digestive enzymes were secreted midway through the culture, which strengthened the digestive and absorptive functions of the intestine. ④ Halfway through the culture, there was a significant increase in the species diversity and evenness of the gastrointestinal flora of the M. salmoides in flowing water. However, by the end of the culture, the gastrointestinal diversity and evenness indices of the treated group were decreasing. In addition, midway through the culture, the stomachs of the treated group and the control group contained Helotiales and Cyanobacteria. The dominant bacteria found in the stomachs of the threatment group and control group were Proteobacteria and Firmicutes respectively, while the dominant bacteria found in the intestines of the control group were Firmicutes and then Proteobacteria. Towards the later stages of culture, the dominant bacteria found in the stomachs and intestines of both the treatment group and control group were Helotiales, while the dominant bacteria present in the culture water were Proteobacteria and Actinobacteria. The present study shows that continuous movement of water under IPRA can reduce the growth indexes.
  • [1]
    宋波澜, 林小涛, 许忠能. 逆流运动训练对多鳞四须鲃巴摄食、生长和体营养成分的影响[J]. 水产学报, 2012, 36(1): 106-114.

    Song B L, Lin X T, Xu Z N. Effects of upstream exercise training on feeding efficiency, growth and nutritional components of juvenile tinfoil barbs(Barbodes schwanenfeldi)[J]. Journal of Fisheries of China, 2012, 36(1): 106-114(in Chinese).
    [2]
    Brown T W, Chappell J A, Boyd C E, et al. A commercial-scale, in-pond raceway system for Ictalurid catfish production[J]. Aquacultural Engineering, 2011, 44(3): 72-79. doi: 10.1016/j.aquaeng.2011.03.003
    [3]
    Brown T W, Hanson T R, Chappell J A, et al. Economic feasibility of an In-Pond raceway system for commercial catfish production in West Alabama[J]. North American Journal of Aquaculture, 2014, 76(1): 79-89. doi: 10.1080/15222055.2013.862195
    [4]
    马文君, 丁雪燕, 周凡, 等. 浙江省池塘内循环流水"跑道"养殖模式发展现状及建议[J]. 中国渔业经济, 2019, 37(5): 76-81. doi: 10.3969/j.issn.1009-590X.2019.05.012

    Ma W J, Ding X Y, Zhou F, et al. Development status and countermeasures of in-pond raceway aquaculture in Zhejiang Province[J]. Chinese Fisheries Economics, 2019, 37(5): 76-81(in Chinese). doi: 10.3969/j.issn.1009-590X.2019.05.012
    [5]
    王浩伟. 草鱼池塘循环水养殖系统生态及经济效益分析与评价[D]. 南京: 南京农业大学, 2015.

    Wang H W. Ecologicai and economic analysis and evaluation of grass carp pond recirculating aquaculture system[D]. Nanjing: Nanjing Agricultural University, 2015 (in Chinese).
    [6]
    邹礼根, 郭水荣, 翁丽萍, 等. 两种不同养殖模式对青鱼肌肉营养品质的影响[J]. 宁波大学学报(理工版), 2018, 31(4): 25-30.

    Zou L G, Guo S R, Weng L P, et al. Effects of two different culture modes on muscle nutrients of black carp[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2018, 31(4): 25-30(in Chinese).
    [7]
    王力, 郭水荣, 徐铃威, 等. 池塘内循环流水养殖七星鲈和斑点叉尾鮰实例[J]. 水产养殖, 2018, 39(3): 4-6. doi: 10.3969/j.issn.1004-2091.2018.03.002

    Wang L, Guo S R, Xu L W, et al. Circulating water in the pond breeding of seven star perch and speckled fork[J]. Journal of Aquaculture, 2018, 39(3): 4-6(in Chinese). doi: 10.3969/j.issn.1004-2091.2018.03.002
    [8]
    原居林, 刘梅, 倪蒙, 等. 不同养殖模式对大口黑鲈生长性能、形体指标和肌肉营养成分影响研究[J]. 江西农业大学学报, 2018, 40(6): 1276-1285.

    Yuan J L, Liu M, Ni M, et al. Effects of different culture models on growth performances, morphological traits and nutritional quality in muscles of Micropterus salmoides[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(6): 1276-1285(in Chinese).
    [9]
    刘梅, 宓国强, 原居林, 等. 池塘内循环流水养殖模式对黄颡鱼生长性能、形体指标、血清生化指标及肌肉营养成分的影响[J]. 动物营养学报, 2019, 31(4): 1704-1717.

    Liu M, Mi G Q, Yuan J L, et al. Effects of internal circulation pond aquaculture model on growth performance, morphological Indices, serum biochemical indices and muscle nutritional components of Pelteobagrus fulvidraco[J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 1704-1717(in Chinese).
    [10]
    阴晴朗, 王志芳, 郭忠宝, 等. 池塘循环水槽一年两造养殖吉富罗非鱼的经济和生态效益分析[J]. 南方水产科学, 2019, 15(6): 25-33. doi: 10.12131/20190085

    Yin Q L, Wang Z F, Guo Z B, et al. Economic and ecological benefits of annually two-cycle farming method of Gift tilapia with in-pond raceway system[J]. South China Fisheries Science, 2019, 15(6): 25-33(in Chinese). doi: 10.12131/20190085
    [11]
    王裕玉, 徐跑, 聂志娟, 等. 池塘工程化循环水养殖模式下养殖密度对大口黑鲈生长性能和生理指标的影响[J]. 淡水渔业, 2019, 49(3): 90-95. doi: 10.3969/j.issn.1000-6907.2019.03.015

    Wang Y Y, Xu P, Nie Z J, et al. Growth performance and serum biochemical parameters of juvenile largemouth bass (Micropterus salmoides) reared at different stocking densities in an in-pond raceway recirculating culture system[J]. Freshwater Fisheries, 2019, 49(3): 90-95(in Chinese). doi: 10.3969/j.issn.1000-6907.2019.03.015
    [12]
    张雷鸣, 原居林, 倪蒙, 等. 两种池塘养殖模式水质因子和浮游植物群落比较分析[J]. 浙江农业学报, 2020, 32(2): 317-326.

    Zhang L M, Yuan J L, Ni M, et al. Comparative analysis of water quality factors and phytoplankton communities in two different aquaculture models[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2): 317-326(in Chinese).
    [13]
    Ni J J, Yan Q Y, Yu Y H, et al. Factors influencing the grass carp gut microbiome and its effect on metabolism[J]. Fems Microbiology Ecology, 2014, 87(3): 704-714. doi: 10.1111/1574-6941.12256
    [14]
    Li T T, Li H, Gatesoupe F J, et al. Bacterial signatures of “red-operculum” disease in the gut of crucian carp (Carassius auratus)[J]. Microbial Ecology, 2017, 74(3): 510-521. doi: 10.1007/s00248-017-0967-1
    [15]
    Li X H, Zhou L, Yu Y H, et al. Composition of gut microbiota in the gibel carp (Carassius auratus gibelio) varies with host development[J]. Microbial Ecology, 2017, 74(1): 239-249. doi: 10.1007/s00248-016-0924-4
    [16]
    王晨赫, 周彦锋, 方弟安, 等. 饥饿与重摄食对河蟹肠道菌群结构的影响[J]. 水生生物学报, 2019, 43(4): 748-756. doi: 10.7541/2019.088

    Wang C H, Zhou Y F, Fang D A, et al. Effects of starvation and refeeding on intestinal microflora of Chinese mitten crab (Eriocheir sinensis)[J]. Acta Hydrobiologica Sinica, 2019, 43(4): 748-756(in Chinese). doi: 10.7541/2019.088
    [17]
    Allen J M, Miller M E B, Pence B D, et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice[J]. Journal of Applied Physiology, 2015, 118(8): 1059-1066. doi: 10.1152/japplphysiol.01077.2014
    [18]
    李秀明. 运动训练对中华倒刺鲃幼鱼生长的影响及其机理研究[D]. 重庆: 西南大学, 2013.

    Li X M. The effect and mechanism of exercise training on growth performance in juvenile Spinibarbus sinensis[D]. Chongqing: Southwest University, 2013 (in Chinese).
    [19]
    Merino G E, Piedrahita R H, Conklin D E. Effect of water velocity on the growth of California halibut (Paralichthys californicus) juveniles[J]. Aquaculture, 2007, 271(1-4): 206-215. doi: 10.1016/j.aquaculture.2007.06.038
    [20]
    Liu G Y, Wu Y J, Qin X H, et al. The effect of aerobic exercise training on growth performance, innate immune response and disease resistance in juvenile Schizothorax prenanti[J]. Aquaculture, 2018, 486: 18-25. doi: 10.1016/j.aquaculture.2017.12.006
    [21]
    Yogata H, Oku H. The effects of swimming exercise on growth and whole-body protein and fat contents of fed and unfed fingerling yellowtail[J]. Fisheries Science, 2010, 66(6): 1100-1105.
    [22]
    Young P S, Cech Jr J J. Improved growth, swimming performance, and muscular development in exercise-conditioned young-of-the-year striped bass (Morone saxatilis)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(4): 703-707. doi: 10.1139/f93-080
    [23]
    East P, Magnan P. The effect of locomotor activity on the growth of brook charr, Salvelinus fontinalis Mitchill[J]. Canadian Journal of Zoology, 1987, 65(4): 843-846. doi: 10.1139/z87-134
    [24]
    Castro V, Grisdale-Helland B, Helland S J, et al. Aerobic training stimulates growth and promotes disease resistance in Atlantic salmon (Salmo salar)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2011, 160(2): 278-290.
    [25]
    郭黎, 马爱军, 王新安, 等. 盐度和温度对大菱鲆幼鱼抗氧化酶活性的影响[J]. 大连海洋大学学报, 2012, 27(5): 422-428. doi: 10.3969/j.issn.2095-1388.2012.05.008

    Guo L, Ma A J, Wang X A, et al. Effects of temperature and salinity on the activities of antioxidant enzymes of juvenile turbot Scophthalmus maximus[J]. Journal of Dalian Fisheries University, 2012, 27(5): 422-428(in Chinese). doi: 10.3969/j.issn.2095-1388.2012.05.008
    [26]
    宋波澜, 许忠能, 王占全. 流速对西伯利亚鲟(Acipenser baerii)行为特性, 抗氧化酶及体内盐酸恩诺沙星残留的影响[J]. 江西农业大学学报, 2014, 36(5): 1109-1114. doi: 10.3969/j.issn.1000-2286.2014.05.030

    Song B L, Xu Z N, Wang Z Q. Effect of water velocity on behavior, antioxidant enzyme and residues of enrofloxacin-HCl in siberian sturgeon(Acipenser baerii)[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(5): 1109-1114(in Chinese). doi: 10.3969/j.issn.1000-2286.2014.05.030
    [27]
    王国霞, 陈冰, 孙育平, 等. 脱脂亮斑扁角水虻幼虫粉替代鱼粉对黄颡鱼幼鱼生长性能、营养素沉积率、血清生化指标和消化酶活性的影响[J]. 水产学报, 2020, 44: 987-998. doi: 10.11964/jfc.20190411736
    [28]
    Jørgensen E H, Jobling M. The effects of exercise on growth, food utilisation and osmoregulatory capacity of juvenile Atlantic salmon, Salmo salar[J]. Aquaculture, 1993, 116(2-3): 233-246. doi: 10.1016/0044-8486(93)90011-M
    [29]
    林浩然. 鱼类生理学[M]. 第2版. 广州: 广东高等教育出版社, 2007.

    Lin H R. Physiology of Fish[M]. 2nd ed. Guangzhou: Guangdong Higher Education Press, 2007 (in Chinese).
    [30]
    Palstra A P, Planas J V. Fish under exercise[J]. Fish Physiology and Biochemistry, 2011, 37(2): 259-272. doi: 10.1007/s10695-011-9505-0
    [31]
    宋波澜. 水流因子对红鳍银鲫(Barbodes schwanenfeldi)游泳行为、生长和生理生态影响的研究[D]. 广州: 暨南大学, 2008.

    Song B L. Effects of water current on swimming activity, growth and ecophysiological aspect of young Barbodes schwanenfeldi[D]. Guangzhou: Jinan University, 2008 (in Chinese).
    [32]
    韩京成, 刘国勇, 梅朋森, 等. 温度对鲫血液生化指标和消化酶的影响[J]. 水生态学杂志, 2010, 31(1): 87-92.

    Han J C, Liu G Y, Mei P S, et al. Effects of temperature on the hematological indices and digestive enzyme activities of crucian carp(Carassius auratus)[J]. Journal of Hydroecology, 2010, 31(1): 87-92.
    [33]
    朱文根, 李星浩, 饶刘瑜, 等. 感染草鱼呼肠孤病毒对肠道菌群多样性的影响[J]. 水生生物学报, 2019, 43(1): 109-116. doi: 10.7541/2019.014

    Zhu W G, Li X H, Rao L Y, et al. Effects of reovirus infection on the intestinal microbiota diversity of grass carp (Ctenopharyngodon idella)[J]. Acta Hydrobiologica Sinica, 2019, 43(1): 109-116(in Chinese). doi: 10.7541/2019.014
    [34]
    李东亮. 感染嗜水气单胞菌草鱼肠道菌群结构研究[D]. 咸阳: 西北农林科技大学, 2016.

    Li D L. Study of the intestinal flora structure of grass carp infection with Aeromonas hydrophila[D]. Xianyang: Northwest A&F University, 2016 (in Chinese).
    [35]
    Cronin O, Barton W, Skuse P, et al. A Prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults[J]. Msystems, 2018, 3(3): e00044-18.
    [36]
    靳雅琦, 郁二蒙, 张凯, 等. 三种饵料对草鱼血清酶活性和肠道组织结构及细菌菌群的影响[J]. 农业生物技术学报, 2019, 27(9): 1652-1663.

    Jin Y Q, Yu E M, Zhang K et al. Effects of three feeds on serum enzyme activity, intestinal structure and bacterial flora of Ctenopharyngodon idellus[J]. Journal of Agricultural Biotechnology, 2019, 27(9): 1652-1663(in Chinese).
    [37]
    Candela M, Biagi E, Maccaferri S, et al. Intestinal microbiota is a plastic factor responding to environmental changes[J]. Trends in Microbiology, 2012, 20(8): 385-391. doi: 10.1016/j.tim.2012.05.003
    [38]
    Karl J P, Lee M M, Madslien E H, et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2017, 312(6): 559-571. doi: 10.1152/ajpgi.00066.2017
    [39]
    Benson A K, Kelly S A, Legge R, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44): 18933-18938. doi: 10.1073/pnas.1007028107
    [40]
    Hansen G H, Strøm E, Olafsen J A. Effect of different holding regimens on the intestinal microflora of herring (Clupea harengus) larvae[J]. Applied and Environmental Microbiology, 1992, 58(2): 461-470. doi: 10.1128/aem.58.2.461-470.1992
    [41]
    Nedoluha P C, Westhoff D. Microbiology of striped bass grown in three aquaculture systems[J]. Food Microbiology, 1997, 14(3): 255-264. doi: 10.1006/fmic.1996.0095
    [42]
    Zhang Y J, Li S, Gan R Y, et al. Impacts of gut bacteria on human health and diseases[J]. International Journal of Molecular Sciences, 2015, 16(4): 7493-7519.
    [43]
    Bledsoe J W, Peterson B C, Swanson K S, et al. Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes[J]. PLoS One, 2016, 11(11): e0166379. doi: 10.1371/journal.pone.0166379
    [44]
    Stephens W Z, Burns A R, Stagaman K, et al. The composition of the zebrafish intestinal microbial community varies across development[J]. The ISME Journal, 2016, 10(3): 644-654. doi: 10.1038/ismej.2015.140
    [45]
    房海, 陈翠珍, 张晓君. 水产养殖动物病原细菌学[M]. 北京: 中国农业出版社, 2009.

    Fang H, Chen C Z, Zhang X J. Aquacultural animal pathogenic bacteriology[M]. Beijing: China Agriculture Press, 2009 (in Chinese).

Catalog

    Article views (983) PDF downloads (32) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return