• ISSN 1000-0615
  • CN 31-1283/S
Volume 45 Issue 10
Oct.  2021
Article Contents
Turn off MathJax

Citation:

Effects of different water temperature and dietary phosphorus levels on the production performance, tissue and water phosphorus content of Macrobrachium nipponense

  • Corresponding author: LI Xiangfei, xfli@njau.edu.cn
  • Received Date: 2020-12-25
    Accepted Date: 2021-03-11
    Available Online: 2021-08-12
  • Water temperature and dietary phosphorus levels are crucial for the growth of crustaceans. However, the interactions between both factors are still poorly understood in crustacean culture, which brings difficulties in advancing the feed utilization. This experiment was conducted to explore the effects of different temperature and dietary phosphorus levels on the production performance, tissue and water phosphorus content of M. nipponense. Using a 3×3 factorial design, nine groups (respectively named 20/1.1, 20/1.5, 20/1.9, 25/1.1, 25/1.5, 25/1.9, 30/1.1, 30/1.5, 30/1.9) were formed, including three water temperature (20, 25 and 30 °C) and three dietary phosphorus levels (1.1%, 1.5% and 1.9%). Each diet was tested by 4 replicates. Prawns were reared in the indoor circulation systems for 8 weeks. The results showed that, in terms of water temperature, the final body weight (FBW), specific growth rate (SGR) and weight gain rate (WGR) of the 30 °C group were all significantly higher than those of the 20 °C, but showed no statistical difference with those of the 25 °C. However, the opposite was true for feed intake and feed conversion rate (FCR). In addition, the phosphorus retention efficiency (PRE) and hemolymph phosphorus levels of the 30 °C group were both significantly higher than those of the other two groups, meanwhile the hemolymph phosphorus level of this group was significantly higher than that of the 25 °C group, but showed no significant difference with the 20 °C group. In terms of dietary phosphorus levels, the FBW, WGR, PRE and hemolymph calcium level of the 1.9% phosphorus level group were all significantly lower than those of the other groups, while phosphorus intake and FCR showed the opposite trend. The SGR of the 1.9%phosphorus level group was significantly lower than that of the 1.5% group, but showed no statistical difference with that of the 1.1% group. Besides, the whole-body phosphorus contents of the 1.1% group was significantly lower than that of the other groups, and the hemolymph calcium content of this group was significantly higher than that of the 1.9% group, but there was no significant difference with the 1.5% group. Serum alkaline phosphatase (AKP) activities of the 1.5% group was significantly higher than that of the 1.1% group, but showed no statistical difference with those of the1.9% group. Furthermore, feed intake, phosphorus intake, PRE, hemolymph phosphorus level and AKP activities were all significantly affected by the interaction between water temperature and dietary phosphorus level with the maximized values observed in the 20/1.1, 25/1.9 and 30/1.9, 30/1.1, 30/1.9, 25/1.5 group, respectively. Additionally, water phosphorus levels increased significantly with increasing sampling time, while the water phosphorus level of the 20/1.5 group was significantly higher than those of the 25/1.1 and 30/1.1 groups. Overall, M. nipponense in the 30/1.1 group obtained the best growth performance and feed efficiency coupled with low phosphorus emission.
  • 加载中
  • [1] Fu H T, Jiang S F, Xiong Y W. Current status and prospects of farming the giant river prawn (Macrobrachium rosenbergii) and the oriental river prawn (Macrobrachium nipponense) in China[J]. Aquaculture Research, 2012, 43(7): 993-998. doi: 10.1111/j.1365-2109.2011.03085.x
    [2] D' Abramo L R, Bordner C E, Conklin D E, et al. Essentiality of dietary phosphatidylcholine for the survival of juvenile lobsters[J]. The Journal of Nutrition, 1981, 111(3): 425-431. doi: 10.1093/jn/111.3.425
    [3] 施正峰, 梅志平, 孙敬, 等. 水温对日本沼虾摄食的影响[J]. 水产学报, 1991, 15(4): 338-343.Shi Z F, Mei Z P, Sun J, et al. Effects of water temperature on the feeding of Macrobrachium nipponense[J]. Journal of Fisheries of China, 1991, 15(4): 338-343(in Chinese).
    [4] 温小波, 库夭梅, 罗静波. 克氏原螯虾耗氧率及窒息点的研究[J]. 大连水产学院学报, 2003, 18(3): 170-174.Wen X B, Ku W M, Luo J B. Studies on theoxygen consumption rate and asphyxiant point of the red swamp crawfish (Procambrus clarkii)[J]. Journal of Dalian Fisheries University, 2003, 18(3): 170-174(in Chinese).
    [5] 陈立侨, 堵南山, 赖伟. 水温、饵料、投饵率对河蟹生长和饵料转化率的影响[J]. 水产科技情报, 1993, 20(4): 153-157.Chen L Q, Du N S, Lai W. Effects of water temperature, feeds and ration size on the growth and the feed conversion ratio of Chinese mitten crab (Eriocheir sinensis)[J]. Fisheries Science and Technology Information, 1993, 20(4): 153-157(in Chinese).
    [6] Leffler C W. Some effects of temperature on the growth and metabolic rate of juvenile blue crabs, Callinectes sapidus, in the laboratory[J]. MarineBiology, 1972, 14(2): 104-110.
    [7] 薛庆举, 蔡永久, 许浩, 等. 温度对河蚬(Corbicula fluminea)氮、磷排泄影响的初步研究[J]. 湖泊科学, 2014, 26(6): 864-870. doi: 10.18307/2014.0608Xue Q J, Cai Y J, Xu H, et al. Effects of temperature on the nitrogen and phosphorus excretion of Corbicula fluminea[J]. Journal of Lake Sciences, 2014, 26(6): 864-870(in Chinese). doi: 10.18307/2014.0608
    [8] 宋娴丽, 孙耀, 武晋宣, 等. 栉孔扇贝的氮、磷排泄及其与温度、壳长之间的关系[J]. 水产学报, 2007, 31(1): 38-44.Song X L, Sun Y, Wu J X, et al. Effects of temperature and shell length on the excretion of nitrogen and phosphorus of Chlamys farreri[J]. Journal of Fisheries of China, 2007, 31(1): 38-44(in Chinese).
    [9] 赖晓芳, 沈善瑞, 吕海波. 水温和盐度对脊尾白虾氮磷代谢的影响[J]. 江苏农业科学, 2013, 41(11): 258-259. doi: 10.3969/j.issn.1002-1302.2013.11.100Lai X F, Shen S R, Lü H B. Effects of temperature and salinity on nitrogen and phosphorus metabolism of Exopalaemon carinicauda[J]. Jiangsu Agricultural Sciences, 2013, 41(11): 258-259(in Chinese). doi: 10.3969/j.issn.1002-1302.2013.11.100
    [10] 李松青, 林小涛, 李卓佳, 等. 摄食对凡纳滨对虾耗氧率和氮、磷排泄率的影响[J]. 热带海洋学报, 2006, 25(2): 44-48. doi: 10.3969/j.issn.1009-5470.2006.02.008Li S Q, Lin X T, Li ZJ, et al. Feeding of effects on metabolism of white Pacific shrimp (Litopenaeus vannamei)[J]. Journal of Tropical Oceanography, 2006, 25(2): 44-48(in Chinese). doi: 10.3969/j.issn.1009-5470.2006.02.008
    [11] Ding Z L, Kong Y Q, Li J F, et al. Growth and metabolic responses of juvenile Macrobrachium nipponense to different dietary carbohydrate levels[J]. Aquaculture Nutrition, 2017, 23(5): 1136-1144. doi: 10.1111/anu.12482
    [12] 虞冰如, 沈竑. 日本沼虾饲料最适蛋白质、脂肪含量及能量蛋白比的研究[J]. 水产学报, 1990, 14(4): 321-327.Yu B R, Shen H. On the appropriate contents of protein, fat and calorie-protein ratio in the diet for freshwater shrimp (Macrobrachium nipponense)[J]. Journal of Fisheries of China, 1990, 14(4): 321-327(in Chinese).
    [13] Ding Z L, Chen L Q, Du Z Y, et al. A mixture of fish oil and soybean oil as a dietary lipid source prevents precocity and promotes growth in juvenile Macrobrachium nipponense(De Haan)[J]. Aquaculture Research, 2014, 45(9): 1567-1572. doi: 10.1111/are.12088
    [14] 孔有琴. 日本沼虾(Macrobrachium nipponense)幼虾的铜营养生理研究[D]. 上海: 华东师范大学, 2014.Kong Y Q. Nutrient physiology of copper in juvenile oriental river prawn Macrobrachium nipponense[D]. Shanghai: East China Normal University, 2014 (in Chinese).
    [15] 郭建林, 陈建明, 孙丽慧, 等. 日本沼虾幼虾对饲料中锌的需求量[J]. 动物营养学报, 2013, 25(3): 661-668. doi: 10.3969/j.issn.1006-267x.2013.03.026Guo J L, Chen J M, Sun L H, et al. Dietary zinc requirement of juvenile oriental river prawn (Macrobrachium nipponense)[J]. Chinese Journal of Animal Nutrition, 2013, 25(3): 661-668(in Chinese). doi: 10.3969/j.issn.1006-267x.2013.03.026
    [16] 鲍蕾. pH、盐度和饵料磷对日本沼虾生长的影响[D]. 保定: 河北大学, 2000.Bao L. Effects of pH, salinity and dietary phosphorus on the growth of Macrobrachium nipponense[D]. Baoding: Hebei University, 2000 (in Chinese).
    [17] 王丽平. 饵料铜、磷和水体pH、温度对日本沼虾肌肉腺苷酸含量的影响[D]. 保定: 河北大学, 2001.Wang L P. Effects of copper, phosphorus in diets and pH, temperature in cultural water on the contents of nucleotides in Macrobrachium nipponense muscles[D]. Baoding: Hebei University, 2001 (in Chinese).
    [18] 孙德文, 詹勇, 许梓荣. 环境温度在鱼类养殖业中的重要作用研究[J]. 水产养殖, 2003, 24(2): 36-39. doi: 10.3969/j.issn.1004-2091.2003.02.015Sun D W, Zhan Y, Xu Z R. The study on importance of environment temperature in aquaculture[J]. Journal of Aquaculture, 2003, 24(2): 36-39(in Chinese). doi: 10.3969/j.issn.1004-2091.2003.02.015
    [19] Lester L J, Pante M J R. Penaeid temperature and salinity responses [M]// Fast A W, Lester L J. Marine shrimp culture: principles and practices. Amsterdam: Elsevier Science Publishers B.V., 1992: 515-534.
    [20] 蒋中英, 张国梁, 马晶, 等. 磷脂在膜结构间的交换:温度和离子强度的影响[J]. 物理学报, 2013, 62(1): 501-507.Jiang Z Y, Zhang G L, Ma J, et al. Lipid exhange between membranes: effects of temperature and ionic strength[J]. Acta Physica Sinica, 2013, 62(1): 501-507(in Chinese).
    [21] 宋协法, 刘鹏, 葛长字. 温度、盐度交互作用对凡纳滨对虾耗氧和氨氮、磷排泄的影响[J]. 渔业现代化, 2009, 36(2): 1-6. doi: 10.3969/j.issn.1007-9580.2009.02.001Song X F, Liu P, Ge C Z. Interactive effects of temperature and salinity on oxygen consumption, ammonia-nitrogen excretion and phosphate excretion in Litopenaeus vannamei[J]. Fishery Modernization, 2009, 36(2): 1-6(in Chinese). doi: 10.3969/j.issn.1007-9580.2009.02.001
    [22] 李志辉, 王玉, 李光光, 等. 温度和盐度对脊尾白虾生长和非特异性免疫的影响[J]. 海洋湖沼通报, 2019(6): 78-82.Li Z H, Wang Y, Li G G, et al. Effects of temperature and salinity on the growth and non-specific immune indices of Exopalaemon carinicauda[J]. Transactions of Oceanology and Limnology, 2019(6): 78-82(in Chinese).
    [23] 游文章, 黄忠志, 廖朝兴, 等. 草鱼对饲料中磷需要量的研究[J]. 水产学报, 1987, 11(4): 285-292.You W Z, Huang Z Z, Liao C X, et al. Requirement of phosphorus in dietary of grass carp[J]. Journal of Fisheries of China, 1987, 11(4): 285-292(in Chinese).
    [24] Roy P K, Lall S P. Dietary phosphorus requirement of juvenile haddock (Melanogrammus aeglefinus L.)[J]. Aquaculture, 2003, 221(1-4): 451-468. doi: 10.1016/S0044-8486(03)00065-6
    [25] Vielma J, Koskela J, Ruohonen K. Growth, bone mineralization, and heat and low oxygen tolerance in European whitefish (Coregonus lavaretus L.) fed with graded levels of phosphorus[J]. Aquaculture, 2002, 212(1-4): 321-333. doi: 10.1016/S0044-8486(02)00039-X
    [26] Andrews J W, Murai T, Campbell C. Effects of dietary calcium and phosphorus on growth, food conversion, bone ash and hematocrit levels of catfish[J]. The Journal of Nutrition, 1973, 103(5): 766-771. doi: 10.1093/jn/103.5.766
    [27] Pan Q, Chen X Y, Li F, et al. Response of juvenile Litopenaeus vannamei to varying levels of calcium phosphate monobasic supplemented to a practical diet[J]. Aquaculture, 2005, 248(1-4): 97-102. doi: 10.1016/j.aquaculture.2005.04.025
    [28] 王秋颖. 碱性磷酸酶特性及其应用的研究进展[J]. 中国畜牧兽医, 2011, 38(1): 157-161.Wang Q Y. Advances on characteristic and application of alkaline phosphatase[J]. China Animal Husbandry & Veterinary Medicine, 2011, 38(1): 157-161(in Chinese).
    [29] Coloso R M, King K, Fletcher J W, et al. Phosphorusutilization in rainbow trout (Oncorhynchus mykiss) fed practical diets and its consequences on effluent phosphorus levels[J]. Aquaculture, 2003, 220(1-4): 801-820. doi: 10.1016/S0044-8486(02)00403-9
    [30] Davis D A, Gatlin Ⅲ D M. Dietary mineral requirements of fish and marine crustaceans[J]. Reviews in Fisheries Science, 1996, 4(1): 75-99. doi: 10.1080/10641269609388579
  • Relative Articles

    [1] LÜ Yanjie, GUAN Jianyi, DU Juan, NING Qianji. Molecular cloning of N-acetyl-β-D-glucosaminidase (NAGase) gene and the effect of KK-42 on NAGase gene in Macrobrachium nipponense. Journal of fisheries of china, 2018, 42(5): 646-652.  doi: 10.11964/jfc.20170110689
    [2] JIANG Zhenting, LIU Bo, GE Xianping, ZHOU Qunlan, SUN Cunxin. Effects of dietary n-3/n-6 fatty acid ratio on growth performance, body composition, serum antioxidant capacity and related genes expression of oriental river prawn (Macrobrachium nipponense). Journal of fisheries of china, 2019, 43(10): 2109-2122.  doi: 10.11964/jfc.20190811929
    [3] SUN Shengming, FU Hongtuo, XUAN Fujun, GE Xianping, ZHU Jian, WU Xugan. Molecular cloning, prokaryotic expression and localization analysis of C-type lectin 3 (MnLec3) cDNA from Macrobrachium nipponense. Journal of fisheries of china, 2019, 43(11): 2317-2326.  doi: 10.11964/jfc.20180611327
    [4] JIANG Hongxia, LIN Xinhui, LI Shukai, WANG Jiechen, LI Xuejun. Molecular cloning and characterization of serum amyloid A gene and the analysis of its immune function in Macrobrachium nipponense. Journal of fisheries of china, 2020, 44(2): 300-313.  doi: 10.11964/jfc.20181211581
    [5] ZHANG Junfang, DU Juan, CHEN Ke, YANG Hong, NING Qianji. Effect of KK-42 on the carapace ultrastructure in Macrobrachium nipponense during postmolt. Journal of fisheries of china, 2020, 44(4): 575-580.  doi: 10.11964/jfc.20190311677
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1) / Tables(4)

Article views(579) PDF downloads(18) Cited by()

Related
Proportional views

Effects of different water temperature and dietary phosphorus levels on the production performance, tissue and water phosphorus content of Macrobrachium nipponense

    Corresponding author: LI Xiangfei, xfli@njau.edu.cn
  • College of Animal Science and Technology, Nanjing Agriculture University, Nanjing    210095, China

Abstract: Water temperature and dietary phosphorus levels are crucial for the growth of crustaceans. However, the interactions between both factors are still poorly understood in crustacean culture, which brings difficulties in advancing the feed utilization. This experiment was conducted to explore the effects of different temperature and dietary phosphorus levels on the production performance, tissue and water phosphorus content of M. nipponense. Using a 3×3 factorial design, nine groups (respectively named 20/1.1, 20/1.5, 20/1.9, 25/1.1, 25/1.5, 25/1.9, 30/1.1, 30/1.5, 30/1.9) were formed, including three water temperature (20, 25 and 30 °C) and three dietary phosphorus levels (1.1%, 1.5% and 1.9%). Each diet was tested by 4 replicates. Prawns were reared in the indoor circulation systems for 8 weeks. The results showed that, in terms of water temperature, the final body weight (FBW), specific growth rate (SGR) and weight gain rate (WGR) of the 30 °C group were all significantly higher than those of the 20 °C, but showed no statistical difference with those of the 25 °C. However, the opposite was true for feed intake and feed conversion rate (FCR). In addition, the phosphorus retention efficiency (PRE) and hemolymph phosphorus levels of the 30 °C group were both significantly higher than those of the other two groups, meanwhile the hemolymph phosphorus level of this group was significantly higher than that of the 25 °C group, but showed no significant difference with the 20 °C group. In terms of dietary phosphorus levels, the FBW, WGR, PRE and hemolymph calcium level of the 1.9% phosphorus level group were all significantly lower than those of the other groups, while phosphorus intake and FCR showed the opposite trend. The SGR of the 1.9%phosphorus level group was significantly lower than that of the 1.5% group, but showed no statistical difference with that of the 1.1% group. Besides, the whole-body phosphorus contents of the 1.1% group was significantly lower than that of the other groups, and the hemolymph calcium content of this group was significantly higher than that of the 1.9% group, but there was no significant difference with the 1.5% group. Serum alkaline phosphatase (AKP) activities of the 1.5% group was significantly higher than that of the 1.1% group, but showed no statistical difference with those of the1.9% group. Furthermore, feed intake, phosphorus intake, PRE, hemolymph phosphorus level and AKP activities were all significantly affected by the interaction between water temperature and dietary phosphorus level with the maximized values observed in the 20/1.1, 25/1.9 and 30/1.9, 30/1.1, 30/1.9, 25/1.5 group, respectively. Additionally, water phosphorus levels increased significantly with increasing sampling time, while the water phosphorus level of the 20/1.5 group was significantly higher than those of the 25/1.1 and 30/1.1 groups. Overall, M. nipponense in the 30/1.1 group obtained the best growth performance and feed efficiency coupled with low phosphorus emission.

  • 日本沼虾(Macrobrachium nipponense)俗称青虾,隶属于节肢动物门(Arthropoda)甲壳纲(Crustacea)十足目(Decapoda)长臂虾科(Palaemonidae)沼虾属(Macrobrachium),广泛分布于东亚、东南亚等地[1]。在我国,其多分布于长江中下游地区。日本沼虾具有生长速率快、蛋白质和氨基酸含量高、肉质鲜嫩等优点,是我国传统淡水养殖的经济虾种之一。近年来,随着人民生活水平的不断提高,消费者对优质水产动物蛋白的需求量日益升高,而日本沼虾的人工养殖也日益受到重视。因此,对其营养需求与高效配合饲料的研发意义重大。

    磷是维持甲壳动物生长发育所需的重要矿物质之一,是构成骨骼等的重要成分。同时,它还参与构成脱氧核糖核酸(DNA)、核糖核酸(RNA)、三磷酸腺苷(ATP)及多种重要辅酶,从而参与蛋白的合成及机体的能量代谢反应。磷也是细胞缓冲体系的重要组成成分,参与机体的酸碱平衡调节。另外,磷还参与磷脂的组成,在维持细胞膜结构和功能的完整性、协助脂类物质及脂溶性维生素的运输和吸收等方面发挥重要作用[2]。然而,由于天然水体中的磷含量较低且不易吸收,甲壳动物主要通过食物来获取机体所需的磷元素。此外,甲壳动物在脱壳过程中会损失大量的磷,如不及时补充会导致其生长受阻,而饲料中磷含量过高又易造成水体富营养化、赤潮和水华等水环境问题。因此,饲料中磷元素的合理添加对于保障水产动物的正常生长及改善水体环境具有重大的意义。

    研究表明,水产动物对磷的利用率存在较大差异,产生这种差异的主要因素包括品种、生长阶段等动物自身因素,同时也包括钙含量及钙磷比例、磷溶解性及环境因子(如水温、盐度、光照等)等外界因素。其中,温度作为影响水产动物生长代谢的关键环境因素,对甲壳动物的摄食[3]、耗氧率[4]、生长[5]、脱壳[6]及氮磷代谢均至关重要。研究发现,随着水温的升高,河蚬(Corbicula fluminea)[7]、栉孔扇贝(Chlamys farreri)[8]、脊尾白虾(Exopalaemon carinicauda)[9]和凡纳滨对虾(Litopenaeus vannamei)[10]等的磷代谢强度和磷排放量均显著升高。然而目前,水温对日本沼虾磷需求量及代谢的影响尚不明确。

    目前,日本沼虾的营养研究工作主要集中在对糖类[11]、蛋白质[12]、脂肪[13]、铜[14]和锌[15]等营养素的需求上。鲍蕾[16]和王丽平等[17]研究了不同饲料磷水平对日本沼虾生长性能的影响,得出其适宜磷需求量为1.08%~2.10%。然而,上述研究并未考虑环境因素对磷需求量及代谢的影响。鉴于此,本研究采用双因素实验设计,研究了不同水温与饲料磷水平对日本沼虾生产性能、组织和水体磷含量的影响,为日本沼虾高效环保的饲料开发提供参考。

1.   材料与方法
  • 本实验采用双因素实验设计中的“3×3因子设计”,以水温和饲料磷水平为影响因素,每个因素各3个水平。其中,水温为20、25和30 °C,饲料磷水平为1.1%、1.5%和1.9%。按照水温和饲料磷水平,将9个实验组分别命名为20/1.1、20/1.5、20/1.9、25/1.1、25/1.5、25/1.9、30/1.1、30/1.5和30/1.9。

    实验饲料以鱼粉、豆粕、花生粕和棉粕为蛋白源,鱼油和豆油为脂肪源,α-淀粉和面粉为糖源。通过改变磷酸二氢钙含量来调节磷水平,并用氯化钙调节钙水平,使得各实验饲料的钙含量相同,空余部分采用α-淀粉调成相等质量。实验饲料配方及概略养分组成见表1。实验原料粉碎后,按比例称重并混合。其中,复合预混料等微量成分采用逐级扩大法混合。粉状原料混合均匀后,再添加鱼油和豆油进行混合。最后,添加20%左右的水分,将所有原料混合均匀。采用双螺杆挤条机将饲料制成直径为1.00 mm的长条状,晾干破碎后保存于−20 °C冰箱冷藏备用。

    项目
    item
    饲料 diets
    1.1%1.5%1.9%
    原料 ingredients
     鱼粉 fish meal 20.80 20.80 20.80
     豆粕 soybean meal 26.03 26.03 26.03
     花生粕 peanut meal 3.21 3.21 3.21
     棉粕 cottonseed meal 15.47 15.47 15.47
     面粉 wheat flour 14.11 14.11 14.11
     α-淀粉 α-starch 13.01 12.20 11.40
     豆油∶鱼油 soybean oil∶fish oil (1∶1) 3.00 3.00 3.00
     氯化钙 calcium chlorde 1.42 0.73 0.00
     磷酸二氢钙 monocalcium phosphate (MCP) 0.40 1.90 3.43
     食盐 salt 0.40 0.40 0.40
     复合预混料 premix1 1.00 1.00 1.00
     脱壳素 ecdysone 0.15 0.15 0.15
     羧甲基纤维素 carboxymethyl cellulose 0.50 0.50 0.50
     乙氧基喹啉 ethoxyquin 0.50 0.50 0.50
    营养水平 nutrient levels
     水分/% moisture 10.28 10.31 9.27
     粗蛋白质/% crude protein 36.02 36.00 36.01
     粗脂肪/% crude lipid 6.01 6.00 6.01
     粗灰分/% crude ash 9.16 9.54 10.22
     总能/(MJ/kg) total energy 18.80 18.77 18.81
     总钙/% total calcium 1.58 1.58 1.54
     总磷/% total phosphorus 0.81 1.21 1.61
    注:1. 每千克预混料中含有以下矿物质(g/kg)和维生素(IU或mg/kg),CuSO4·5H2O 2.0 g, FeSO4·7H2O 25 g, ZnSO4·7H2O 22 g, MnSO4·4H2O 7 g, Na2SeO3 0.04 g, KI 0.026 g, CoCl2·6H2O 0.1 g, VA 1 500 000 IU, VD 200 000 IU, VE 5 000 mg, VK3 220 mg, VB1 320 mg, VB2 1090 mg, VB5 2 000 mg, VB6 500 mg, VB12 15 mg, VC 5 000 mg, 泛酸1000 mg, 叶酸230 mg, 胆碱60000 mg, 生物素130 mg, 肌醇45000 mg, 烟酸 3000 mg
    Notes: 1.premix supplied the following minerals (g/kg) and vitamins (IU or mg/kg), CuSO4·5H2O 2.0 g, FeSO4·7H2O 25 g, ZnSO4·7H2O 22 g, MnSO4·4H2O 7 g, Na2SeO3 0.04 g, KI 0.026 g, CoCl2·6H2O 0.1 g, vitamin A 1 500 000 IU, vitamin D 200 000 IU, vitamin E 5000 mg, vitamin K3 220 mg, vitamin B1 320 mg, vitamin B2 1090 mg, vitamin B5 2 000 mg, vitamin B6 500 mg, vitamin B12 15 mg, vitamin C 5000 mg, pantothenate 1 000 mg, folic acid 230 mg, choline 60 000 mg, biotin 130 mg, myoinositol 45 000 mg, niacin 3000 mg

    Table 1.  Formulation and proximate composition of the experimental diets (air-dry basis)

  • 实验用虾为杂交日本沼虾“太湖1号”。挑选体格健壮、规格整齐(平均体质量为0.68 g)的虾360尾,随机分为9组,每组4个重复,每个重复10尾,分别饲养于室内循环系统中。

    实验期间,放入适量仿真水草和10根截断后的PVC管以供日本沼虾休息和躲藏,持续供氧,使水中的溶解氧含量为6 mg/L以上,氨氮浓度小于0.02 mg/L,pH值为7.0~7.5。此外,通过空调将室温保持在20 °C,并用温度计进行校准调控。然后,在25和30 °C实验组的循环水族箱内放置加热棒来调节水温,并使其处在设定温度。养殖期间,每天投喂饵料3次,分别在7:00、12:00和17:00 进行。期间,根据残饵量及虾体生长情况及时调节投喂量。每次投喂之前,用长度为45.5 cm的虹吸管吸取残饵及粪便,并记录虾摄食量和死亡情况。养殖周期为8周。期间,每周更换1/4的水以满足虾对水质的基本需求,并测定水体中的磷含量。

  • 养殖实验结束后,以箱为单位统计虾的尾数,称重并计算增重率和特定生长率。然后,每箱随机选取7尾虾,用装有0.2 mL抗凝剂的1 mL注射器从日本沼虾的头胸部血窦中抽取血淋巴。血淋巴与抗凝剂按体积比1∶1合并后,放于1.5 mL离心管中,在4 °C、3 500 r/min的条件下离心10 min制备血浆。然后将血浆置于−80 °C冰箱中冷藏备用。每箱内剩下的3尾虾于−20 °C冰箱保存,用于全虾磷含量的测定,并计算虾体的磷保留率。另外,每周在换水前,采集1次水样以测定水体中的磷含量。

    生长性能的计算公式:

    增重率(weight gain, WG, %)=100×(WtW0)/W0

    特定生长率(specific growth rate, SGR, %/d)=(lnWt−lnW0)/t×100%

    磷摄入量(phosphorus intake, g)=Wf×P

    饲料系数(feed conversion rate, FCR)=Wf/(WtW0)

    磷保留率(phosphorus retention efficiency, PRE, %)=100×(Wt×PtW0×P0)/(Wf×P)

    式中,W0为虾初始体质量(g),Wt为虾终末体质量(g),P0为实验开始时全虾的磷含量(%),Pt为实验结束时全虾的磷含量(%),P为饲料中的磷含量(%),Wf为摄食量(g),t为饲养天数(d)。

  • 将饲料称重后置于坩埚中,在105 °C的烘箱中烘至恒重后得到饲料中水分的含量。粗蛋白含量采用全自动凯氏定氮仪测定;粗脂肪含量采用索氏抽提法测定;将称好的样品置于电炉上碳化至无烟后,在550 °C的马弗炉中灼烧5 h后测得粗灰分的含量;样品总能采用氧弹测热仪测定。

  • 采用高锰酸钾法(GB/T 6436—2002)测定饲料中的钙含量。将饲料中的有机物破坏,钙离子变成溶于水的离子,用草酸铵定量沉淀,用高锰酸钾法间接测定钙含量。

    采用分光光度法(GB/T 6437—2002)测定饲料及全虾中的磷含量。将饲料及全虾灰化后,在酸性溶液中用钒钼酸铵处理,生成黄色络合物后,在400 nm波长下进行比色测定。

  • 采用钼酸铵分光光度法(GB 11893—89)测定水体中的总磷。在酸性介质中,正磷酸盐与钼酸铵反应生成磷钼杂多酸,用抗坏血酸还原为磷钼蓝后,在700 nm波长下比色测定。

  • 血淋巴碱性磷酸酶(AKP)活性、磷和钙元素含量采用南京建成生物工程有限公司的相关试剂盒(编号:A059-2-2;C006-1-1;C004-2-1)进行测定。

    采用分光光度法测定血淋巴碱性磷酸酶活性,测定原理:碱性磷酸酶分解磷酸苯二钠,产生游离酚和磷酸,酚在碱性溶液中与4-氨基安替吡啉作用,经铁氰化钾氧化生成红色醌衍生物,可根据红色的深浅测定酶活性的高低。

    采用比色法测定血淋巴磷含量,测定原理:血淋巴中无机磷与钼酸作用生成磷钼酸,后者被还原成钼蓝,在660 nm处有最大吸收峰,通过比色可以计算出无机磷的含量。

    通过比色法测定血淋巴钙含量,测定原理:钙离子在碱性溶液中与甲基百里香酚蓝(MTB)结合,生成蓝色络合物;通过比色与经过同样处理的钙标准进行比较,即可计算血淋巴中钙含量。

  • 以水温和饲料磷含量为影响因素,用SPSS25.0软件对数据进行双因素方差分析(Two-Way ANOVA),用Duncan氏多重比较法分析组间的差异显著性,显著性水平设定为P<0.05,分析结果用平均值±标准误表示。另外,水体中磷排放量数据以时间和组别为因素,按照上述方法进行双因素方差分析和多重比较。

2.   结果
  • 水温显著影响日本沼虾的终末体质量(P<0.05)、增重率(P<0.05)、特定生长率(P<0.05)、摄食量(P<0.05)、饵料系数(P<0.05)和磷保留率(P<0.05),但对磷摄入量无显著影响(P>0.05)(表2)。其中,30 °C组的终末体质量、特定生长率和增重率均显著高于20 °C组(P<0.05),但与25 °C组间差异不显著(P>0.05),而摄食量和饵料系数的变化趋势与此相反(P<0.05)。此外,30 °C组的磷保留率显著高于其他2组(P<0.05)。饲料磷水平对摄食量无显著影响(P>0.05),但显著影响其他指标。1.9%磷水平组的终末体质量、增重率和磷保留率显著低于其他2组(P<0.05),而饵料系数和磷摄入量的变化趋势与之相反(P<0.05)。此外,1.9%磷水平组特定生长率显著低于1.5%磷水平组(P<0.05),但与1.1%磷水平组差异不显著(P>0.05)。另外,水温和饲料磷水平之间的交互作用显著影响摄食量(P<0.05)、磷摄入量(P<0.05)和磷保留率(P<0.05),峰值分别发现于20/1.1、25/1.9和30/1.9、30/1.1组。

    项目
    items
    终末体质量/g
    final
    weight
    增重率/%
    weight
    gain
    特定生长率/(%/d)
    specific growth
    rate
    摄食量/g
    feed
    intake
    磷摄入量/mg
    phosphorus
    intake
    饲料系数
    feed conver
    sionrate
    磷保留率/%
    phosphorus
    retention efficiency
    组别(水温/磷水平) groups (water temperature/phosphorus contents)
     20/1.1 1.48±0.04bc 117.45±5.15bc 1.28±0.05b 1.19±0.04a 9.60±0.31c 1.79±0.13 25.28±1.11f
     20/1.5 1.55±0.06abc 127.86±8.54abc 1.43±0.06ab 1.12±0.01ab 13.55±0.17b 1.83±0.15 39.94±2.13cd
     20/1.9 1.42±0.19c 108.51±27.54c 1.29±0.23b 1.08±0.06ab 17.35±0.92a 2.12±0.14 33.02±7.50def
     25/1.1 1.61±0.08abc 137.19±11.24abc 1.46±0.09ab 1.10±0.04ab 8.93±0.29c 1.59±0.11 43.85±1.70bc
     25/1.5 1.60±0.07abc 135.65±10.48abc 1.51±0.08ab 1.15±0.06ab 13.92±0.72b 1.72±0.06 37.20±2.89cde
     25/1.9 1.52±0.14abc 123.05±20.01abc 1.39±0.13ab 1.12±0.05ab 18.03±0.73a 2.05±0.12 28.33±2.74ef
     30/1.1 1.79±0.05a 163.06±7.78b 1.68±0.09a 1.07±0.07ab 8.69±0.58c 1.63±0.10 62.47±3.04a
     30/1.5 1.71±0.21ab 151.34±31.52ab 1.62±0.20a 1.04±0.06b 12.52±0.69b 1.66±0.09 51.54±5.94b
     30/1.9 1.54±0.06abc 127.05±8.83abc 1.40±0.10ab 1.12±0.05ab 18.03±0.87a 1.93±0.29 34.28±1.99def
    水温/°C water temperature
     20 1.48±0.12b 117.94±17.39b 1.34±0.15b 1.13±0.06a 13.50±3.34 1.91±0.04a 32.75±7.49b
     25 1.58±0.10ab 131.97±14.74ab 1.45±0.11ab 1.12±0.05ab 13.63±3.93 1.79±0.04ab 36.46±7.01b
     30 1.68±0.16a 147.15±23.54a 1.57±0.18a 1.08±0.07b 13.08±4.06 1.74±0.04b 49.43±12.66a
    总磷含量/% total phosphorus content
     1.1 1.63±0.14a 139.24±20.95a 1.48±0.19ab 1.12±0.07 9.07±0.55c 1.67±0.14b 43.87±15.98a
     1.5 1.62±0.14a 138.28±20.61a 1.52±0.14a 1.10±0.07 13.33±0.81b 1.73±0.12b 42.90±7.44a
     1.9 1.50±0.14b 119.54±21.17b 1.36±0.16b 1.11±0.05 17.80±0.84a 2.03±0.20a 31.88±5.06b
    双因素分析 Two-Way ANOVA
     水温 water temperature 0.001 0.001 0.001 0.033 0.112 0.000 0.000
     总磷 total phosphorus content 0.014 0.013 0.018 0.655 0.000 0.020 0.000
     交互 interaction 0.508 0.517 0.234 0.012 0.028 0.823 0.000
    注:同列数据肩标含不同字母的两组平均值之间差异显著(P<0.05),下同
    Notes: values in the same column with different superscripts are significantly difference (P<0.05),the same below

    Table 2.  Production performance of M. nipponense fed practical diets with different total phosphorus contents at different water temperature

  • 水温显著影响血淋巴磷含量(P<0.05),而对全虾磷含量、血淋巴钙水平及血清碱性磷酸酶活性均无显著影响(P>0.05)(表3)。其中,30 °C组血淋巴磷水平显著高于25 °C组(P<0.05),而与20 °C组无显著差异(P>0.05)。饲料磷水平对血淋巴磷水平无显著影响(P>0.05),但显著影响其他指标。其中,1.1%磷水平组全虾磷含量显著低于其他2组(P<0.05),而1.9%磷水平组的血淋巴钙水平显著低于1.1%磷水平组(P<0.05),而与1.5%组无显著差异(P>0.05);另外,1.5%磷水平组血淋巴碱性磷酸酶活性显著高于1.1%磷水平组(P<0.05),但与1.9%磷水平组间无显著差异(P>0.05)。此外,水温和饲料磷水平之间的交互作用显著影响血淋巴磷含量及碱性磷酸酶活性(P<0.05),且峰值分别出现在30/1.9和25/1.5组。

    组别(水温/磷水平)
    groups (water temperature/
    phosphorus contents)
    全虾磷含量/(mg/g)
    whole-body
    phosphorus contents
    血淋巴磷水平/(mmol/L)
    hemolymph
    phosphorus levels
    血淋巴钙水平/(mmol/L)
    hemolymph
    calcium levels
    血淋巴碱性磷酸酶活性/(U/100 mL)
    hemolymph
    AKP activities
     20/1.1 0.27±0.05c 2.28±0.04 3.00±0.26 106.74±4.68b
     20/1.5 0.45±0.04ab 2.58±0.12 2.96±0.42 84.30±3.98b
     20/1.9 0.52±0.03a 2.26±0.22 2.42±0.54 116.62±8.48b
     25/1.1 0.34±0.03bc 2.34±0.04 2.90±0.42 83.80±2.07b
     25/1.5 0.42±0.07ab 2.36±0.12 2.92±0.26 169.86±16.26a
     25/1.9 0.44±0.02ab 2.24±0.14 2.18±0.76 91.34±5.30b
     30/1.1 0.39±0.02abc 2.42±0.22 2.86±0.44 103.3±12.58b
     30/1.5 0.47±0.01ab 2.46±0.20 2.66±0.40 109.98±17.35b
     30/1.9 0.50±0.09a 2.58±0.14 2.76±0.10 101.76±8.98b
    水温/°C water temperature
     20 0.41±0.11 2.36±0.20ab 2.80±0.48 102.56±5.16
     25 0.40±0.06 2.32±0.10b 2.68±0.60 115.00±12.84
     30 0.45±0.07 2.48±0.18a 2.76±0.34 105.02±7.08
    总磷含量/% total phosphorus contents
     1.1 0.33±0.06b 2.34±0.12 2.92±0.36a 97.94±5.10b
     1.5 0.44±0.05a 2.46±0.16 2.86±0.36ab 121.38±13.02a
     1.9 0.49±0.06a 2.36±0.22 2.46±0.56b 103.24±5.13ab
    双因素分析 Two-Way ANOVA
     水温 water temperature 0.089 0.032 0.772 0.306
     总磷 total phosphorus content 0.000 0.125 0.031 0.024
     交互 interaction 0.113 0.046 0.382 0.000

    Table 3.  Tissue calcium and phosphorus content and the activity of hemolymph alkaline phosphatase of M. nipponense fed practical diets with different total phosphorus contents at different water temperatures

  • 为了进一步考察不同水温及饲料磷水平对日本沼虾磷排放量的影响,从3个水温中分别选取增重率最高的一组(即20/1.5、25/1.1和30/1.13组),对其水体磷含量进行分析。采样时间、组别及其交互作用均极显著地影响水体磷含量(P<0.05)(图1表4表4中对应图1的数据)。从采样时间来看,水体磷含量随着时间的积累显著升高(P<0.05)。从组别来看,20/1.5组水体磷含量极显著高于25/1.1组和30/1.1组(P<0.05),而后2组间的差异不显著(P>0.05)。此外,20/1.5组和25/1.1组第8周的水体磷含量均极显著地高于前6周(P<0.05),与第7周之间无显著差异(P>0.05),而30/1.1组第8周的水体磷含量极显著高于前7周(P<0.05)。

    Figure 1.  Phosphorus contents in the water cultured M. nipponense fed practical diets with different total phosphorus contents at different water temperature

    组别
    groups
    周数 weeks
    012345678
    25/1.1BfBfBeBdBcdBbcBbBaBa
    30/1.1BiBhBgBfBeBdBcBbBa
    20/1.5AgAfAeAdAcAcAbAabAa
    注:小写字母表示同一组别不同时间点之间有差异(P<0.05),大写字母表示同一时间点不同组别之间有差异(P<0.05)
    Notes: different lower-case letters indicate significant differences (P<0.05) at different time points within each treatment, whereas different capital letters indicate significant differences (P<0.05) at the same time point among different treatments

    Table 4.  Difference analysis of the phosphorus contents in the water cultured M. nipponense fed practical diets with different total phosphorus contents at different water temperature

3.   讨论
  • 研究表明,水温是影响水产动物生长和代谢的关键因素[18]。一般情况下,在适宜温度范围内,水产动物的基础代谢率会随温度的升高而增强,进而促进体内营养物质的吸收和利用,最终促进机体生长[19]。本研究表明,温度显著影响日本沼虾的终末体质量、增重率和特定生长率,且其随温度的升高显著升高,并在30 °C达到峰值,而饵料系数的变化趋势与其相反。另外,日本沼虾的磷保留率也与水温呈正相关。究其原因,水温的适度升高导致日本沼虾体内代谢酶活性及磷脂与细胞膜的接触面积增加,进而促进了虾体对饲料中磷的消化吸收及磷脂的跨膜交换速率[20]。与此同时,磷酸基团、ATP和核酸等物质的形成得以增强,进而促进了机体生长[21]。与此相反,日本沼虾摄食量随着温度的升高显著下降,该结果与施正峰等[3]的报道不一致,可能是由于饵料属性、养殖周期及摄食评价指标的不同所导致。推测原因,随着水温的升高,日本沼虾的活动量相应增加,个体间的打斗活动也随之增强,进而导致摄食量的下降[22]。此外,水温的升高也可能在一定程度上对日本沼虾的食欲造成了影响,进一步导致其摄食量降低,但相关研究较缺乏,尚待进一步研究。

    研究表明,饲料中磷的添加量不足或过多,均会对水产动物的生长产生不利影响[23-24]。本研究表明,随着饲料磷水平的升高,日本沼虾的终末体质量、增重率和磷保留率均显著下降,并在磷水平为1.9%时达到最低值,而磷摄入量和饵料系数的变化趋势与此相反。究其原因,可能是饲料中1.1%的磷含量已满足日本沼虾的基本需求,而1.9%的添加量超出该适宜范围。过高的磷含量在降低日本沼虾对其吸收利用的同时,还抑制了虾体对其他微量元素的吸收和代谢[25],进而使饲料利用率、增重率和磷保留率降低。已有研究表明,日本沼虾的适宜磷需求量为1.082%~1.290%[16]。饲料中适宜的磷含量可以促进日本沼虾的生长,而过高的磷含量则会抑制虾体生长。

    此外,本研究表明,日本沼虾摄食量、磷摄入量和磷保留率显著受水温和饲料磷水平间交互作用的影响。当水温为20 °C时,1.9%磷水平组摄食量最低;而当水温为30 °C时,该组的摄食量为最高。推测在水温偏低的情况下,过高的磷含量会抑制日本沼虾的食欲,进而影响其摄食。另外,当水温为20 °C时,随着饲料磷水平的升高,终末体质量、增重率及磷保留率均呈现先升高后降低的趋势;而当水温为25和30 °C时,其则与饲料磷水平呈负相关。这表明,在低温条件下,适度增加饲料磷含量可以促进虾体生长,并降低其对水体中磷的排放量。然而,由于水温对甲壳动物磷代谢的影响尚不明确,以上结果和推测尚需进一步验证。

  • 本研究表明,温度显著影响血淋巴中的磷含量,且二者呈正相关关系。全虾磷含量虽然无显著显著,但趋势也与此类似。究其原因,可能是由于水温升高使机体的基础代谢率升高,血淋巴对磷的运输加快,促进磷脂和核酸等的形成及外骨骼的矿化,从而导致血淋巴及全虾中磷含量出现上升的趋势。

    研究表明,水产动物机体和组织中的磷含量可作为衡量其最适磷需求量的指标[26]。在本研究中,饲料磷水平显著影响日本沼虾全虾磷含量,且二者呈正相关关系。同时,血淋巴中的钙含量随着饲料磷水平的升高而降低。究其原因,可能是随着饲料磷水平的升高,磷脂和核酸等的形成及外骨骼的矿化逐渐增强,进而导致虾体磷含量不断累积。此外,过高的饲料磷水平会促进水产动物甲状旁腺激素分泌,进而导致钙浓度的下降[27]

    碱性磷酸酶广泛分布于微生物和动物体内,可直接参与磷代谢,对磷的消化、吸收及排泄具有重要作用。在动物营养研究中,碱性磷酸酶是衡量机体钙、磷代谢的重要指标,而血清碱性磷酸酶活性常被研究者用来评估动物机体内钙、磷的营养状况及动物对饲料中钙、磷的适宜需求量[28]。在本实验中,日本沼虾血清碱性磷酸酶活性随饲料磷水平的升高呈现先升高后下降的趋势,并在1.5%磷水平组达到峰值。究其原因,可能是当饲料磷水平为1.5%时,日本沼虾外骨骼的矿化程度升高,导致体内碱性磷酸酶活性增强。表明日本沼虾的适宜磷需求量为1.0%~1.5%。

    此外,本研究表明,日本沼虾血淋巴中的磷含量及碱性磷酸酶活性显著受水温和饲料中磷水平之间交互作用的影响。当水温为20 °C时,随着饲料磷水平的升高,碱性磷酸酶活性呈现先降低后升高的趋势;当水温为25和30 °C时,其则呈先升高后降低的趋势。表明在不同水温下,饲料磷水平对虾体磷代谢机能的影响不同,但具体机理需进一步研究。

  • 虽然磷对水产动物的生长和代谢至关重要,但当供给量超过所需量时,水产动物肠道对磷的吸收会达到饱和,超出该饱和量的磷便会通过排泄进入水中[29]。排泄的磷中,可溶性磷可直接溶解在水体中,而颗粒磷则沉积在水底缓慢释放。当水体和淤泥中累积的磷达到一定程度时,便会导致水体富营养化等问题[30]。本研究表明,水体中磷含量随养殖时间的推移而显著增加,表明水体中磷含量具有累积效应。此外,本研究的3个组中,20/1.5组水体磷含量显著高于其他两组。这表明,适宜提高水温并降低饲料磷水平可显著降低日本沼虾磷排放量。结合生长和磷保留率数据,1.1%的磷添加量不仅能够维持日本沼虾的生长所需,还可以显著提高机体磷暴露率并降低养殖水体中的磷排放量。

4.   结论
  • 综上所述,本研究结果表明,不同水温及饲料磷水平对日本沼虾生长性能、组织磷含量及水体磷排放量有显著影响。当水温为30 °C、饲料磷水平为1.1%时,日本沼虾的生长性能及饲料效率最优,水体中磷的排放量也较低。

Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return