Citation: | HUANG Jiahui, GUO Yusong, DU Juan, DONG Zhongdian, WANG Zhongduo. Development of pigment cells and analysis of the expression of related genes in the early embryo of Oryzias curvinotus[J]. Journal of fisheries of china, 2021, 45(12): 1965-1972. DOI: 10.11964/jfc.20201112486 |
[1] |
胡玉婷, 杨少荣, 黎明政, 等. 鄱阳湖及洞庭湖红鳍原鲌的群体分化研究[J]. 水生生物学报, 2015, 39(1): 13-23. doi: 10.7541/2015.2
Hu Y T, Yang S R, Li M Z, et al. Population differentiation of Cultrichthys erythropterus in Poyang Lake and Dongting Lake[J]. Acta Hydrobiologica Sinica, 2015, 39(1): 13-23(in Chinese). doi: 10.7541/2015.2
|
[2] |
Lang D, Epstein J A. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer[J]. Human Molecular Genetics, 2003, 12(8): 937-945. doi: 10.1093/hmg/ddg107
|
[3] |
Curran K, Lister J A, Kunkel G R, et al. Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest[J]. Developmental Biology, 2010, 344(1): 107-118. doi: 10.1016/j.ydbio.2010.04.023
|
[4] |
Lamoreux M L, Kelsh R N, Wakamatsu Y, et al. Pigment pattern formation in the medaka embryo[J]. Pigment Cell Research, 2005, 18(2): 64-73. doi: 10.1111/j.1600-0749.2005.00216.x
|
[5] |
Kimura T, Nagao Y, Hashimoto H, et al. Leucophores are similar to xanthophores in their specification and differentiation processes in medaka[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7343-7348. doi: 10.1073/pnas.1311254111
|
[6] |
Fadeev A, Krauss J, Singh A P, et al. Zebrafish Leucocyte tyrosine kinase controls iridophore establishment, proliferation and survival[J]. Pigment Cell & Melanoma Research, 2016, 29(3): 284-296.
|
[7] |
Patterson L B, Parichy D M. Zebrafish pigment pattern formation: insights into the development and evolution of adult form[J]. Annual Review of Genetics, 2019, 53(1): 505-530. doi: 10.1146/annurev-genet-112618-043741
|
[8] |
Rawles M E. Origin of pigment cells from the neural crest in the mouse embryo[J]. Physiological Zoology, 1947, 20(3): 248-266. doi: 10.1086/physzool.20.3.30151958
|
[9] |
刘筠. 中国养殖鱼类繁殖生理学[M]. 北京: 农业出版社, 1993: 81-89.
Liu Y. Reproductive physiology of cultured fish in China[M]. Beijing: China Agriculture Press, 1993: 81-89 (in Chinese).
|
[10] |
Koga A, Inagaki H, Bessho Y, et al. Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes[J]. Molecular & General Genetics, 1995, 249(4): 400-405.
|
[11] |
Iida A, Inagaki H, Suzuki M, et al. The tyrosinase gene of the ib albino mutant of the medaka fish carries a transposable element insertion in the promoter region[J]. Pigment Cell Research, 2004, 17(2): 158-164. doi: 10.1046/j.1600-0749.2003.00122.x
|
[12] |
Lamason R L, Mohideen M A P K, Mest J R, et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans[J]. Science, 2005, 310(5755): 1782-1786. doi: 10.1126/science.1116238
|
[13] |
Frohnhöfer H G, Krauss J, Maischein H M, et al. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish[J]. Development, 2013, 140(14): 2997-3007. doi: 10.1242/dev.096719
|
[14] |
McGowan K A, Barsh G S. How the zebrafish got its stripes[J]. eLife, 2016, 5: e14239. doi: 10.7554/eLife.14239
|
[15] |
Petratou K, Subkhankulova T, Lister J A, et al. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest[J]. PLoS Genetics, 2018, 14(10): e1007402. doi: 10.1371/journal.pgen.1007402
|
[16] |
Tran H D, Ta T T. Dependence of Hainan medaka, Oryzias curvinotus (Nichols & Pope, 1927), on salinity in the Tien Yen estuary of northern Vietnam[J]. Animal Biology, 2016, 66(1): 49-64. doi: 10.1163/15707563-00002486
|
[17] |
Wang Z, et al. Complete mitogenome of Hainan medaka Oryzias curvinotus (Teleostei: Beloniformes) and transcriptional differences between male and female liver[J]. Mitochondrial DNA Part B, 2017, 2(1): 157-158. doi: 10.1080/23802359.2017.1303340
|
[18] |
廖健. 雷州半岛红树林区仔稚幼鱼多样性及弓背青鳉对壬基酚的响应[D]. 湛江: 广东海洋大学, 2017.
Liao J. Species diversity of larvae fish in mangrove of Leizhou peninsula and the response of Oryzias curvinotus to Nonylphenol[D]. Zhanjiang: Guangdong Ocean University, 2017 (in Chinese).
|
[19] |
黄顺楷, 郭昱嵩, 汪淳, 等. 弓背青鳉3种雌激素受体基因的克隆及其表达分析[J]. 广东海洋大学学报, 2019, 39(2): 8-19.
Huang S K, Guo Y S, Wang C, et al. Cloning and expression analysis of three estrogen receptor genes in Hainan medaka[J]. Journal of Guangdong Ocean University, 2019, 39(2): 8-19(in Chinese).
|
[20] |
张海瑞, 王中铎, 黄顺楷, 等. 弓背青鳉的胚胎发育及自发荧光观察[J]. 广东海洋大学学报, 2019, 39(2): 38-44.
Zhang H R, Wang Z D, Wang S K, et al. Observation of embryonic development and autofluorescence of Oryzias curvinotus[J]. Journal of Guangdong Ocean University, 2019, 39(2): 38-44(in Chinese).
|
[21] |
Kinoshita Masato, Murata Kenji, Naruse Kiyoshi, et al. Medaka: biology, management, and experimental protocols[M]. John Wiley & Sons, Ltd. : 2009: 54-60.
|
[22] |
Dong Z D, Chen P S, Zhang N, et al. Evaluation of reference genes for quantitative real-time PCR analysis of gene expression in Hainan medaka (Oryzias curvinotus)[J]. Gene Reports, 2019, 14: 94-99. doi: 10.1016/j.genrep.2018.11.008
|
[23] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T Method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
|
[24] |
Krauss J, Geiger-Rudolph S, Koch I, et al. A dominant mutation in tyrp1A leads to melanophore death in zebrafish[J]. Pigment Cell & Melanoma Research, 2014, 27(5): 827-830.
|
[25] |
徐伟, 封竣淇, 黄兰, 等. TYR基因研究进展[J]. 中国畜牧杂志, 2017, 53(4): 23-27.
Xu W, Feng J Q, Huang L, et al. Research progress on TYR gene[J]. Chinese Journal of Animal Science, 2017, 53(4): 23-27.
|
[26] |
Lopes S S, Yang X Y, Müller J, et al. Leukocyte tyrosine kinase functions in pigment cell development[J]. PLoS Genetics, 2008, 4(3): e1000026. doi: 10.1371/journal.pgen.1000026
|
[27] |
Galibert M D, Dexter T J, Goding C R, et al. Pax3 and regulation of the melanocyte-specific tyrosinase-related protein-1 promoter[J]. Journal of Biological Chemistry, 1999, 274(38): 26894-26900. doi: 10.1074/jbc.274.38.26894
|
[28] |
Ling H, William J P. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf?[J]. Cell Research, 2008, 18(12): 1163-1176. doi: 10.1038/cr.2008.303
|
[29] |
Greenhill E R, Rocco A, Vibert L, et al. An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development[J]. PLoS Genetics, 2011, 7(9): e1002265. doi: 10.1371/journal.pgen.1002265
|
[30] |
邹旭龙. 几种环境因子对锦鲤生长及体色影响的研究[D]. 大连: 大连海洋大学, 2016.
Zou X L. Effects of several environmental factors on growth and skin color of Koi carp (Cyprinus carpio var. Koi)[D]. Dalian: Dalian Ocean University, 2016 (in Chinese).
|
[31] |
Han D, Xie S Q, Lei W, et al. Effect of light intensity on growth, survival and skin color of juvenile Chinese longsnout catfish (Leiocassis longirostris Günther)[J]. Aquaculture, 2005, 248(1-4): 299-306. doi: 10.1016/j.aquaculture.2005.03.016
|
[32] |
Ginés R, Afonso J M, Argüello A, et al. The effects of long-day photoperiod on growth, body composition and skin colour in immature gilthead sea bream (Sparus aurata L.)[J]. Aquaculture Research, 2004, 35(13): 1207-1212. doi: 10.1111/j.1365-2109.2004.01126.x
|