• ISSN 1000-0615
  • CN 31-1283/S
Volume 9 Issue 11
Nov.  2021
Article Contents
Turn off MathJax

Citation:

Research progress of recycling and high-value utilization of protein from aquatic by-products

  • Corresponding author: ZHAO Yong, yzhao@shou.edu.cn ; WANG Jingjing, w_j2010@126.com
  • Received Date: 2020-09-03
    Accepted Date: 2021-01-29
    Available Online: 2021-09-15
  • The production of aquatic products is always increasing worldwide, due to their high nutritional value. However, a large number of by-products are produced during the consumption and processing of aquatic products, causing serious resources waste and environmental pollution. On this basis, the by-products of aquatic products were developed and applied in many fields according to their different characteristics. Among them, the by-product proteins have been widely recycled and utilized in practice due to its unique functions and high added value. Therefore, this article reviewed the typically physical, chemical and biological methods for recycling the proteins from aquatic products. Meanwhile, we also introduced the research progress in the high-value utilization of by-product proteins from fish, crustaceans and shellfish, as well as their future development trend, with the purpose of further enhancing the comprehensive utilization of aquatic by-products and promoting the high-quality development of aquatic product industry. Generally, the aquatic products from fishing or aquaculture often needed to be processed before their marketing. However, massive by-products were left after being processed, and they must undergo further treatment to obtain end-products with high added value. Among these by-products, proteins accounted for a large proportion and had higher nutritional value. The efficiency of traditional technology to recycle by-products of different aquatic products was limited, and the yield was very low, therefore, it was difficult to potently recycle a large number of by-product proteins from aquatic products. In the past century, the scientists in academic and industrial community made great efforts to fully recycle the by-product proteins of aquatic products, and achieved many end-products through physical, chemical and biological methods. With the advance and innovation of science and technology, the recycling conditions of by-product proteins from aquatic products have been greatly optimized, and the recyclable types of by-products have greatly expanded, as well as the proteins yield has been significantly improved. Therefore, the research hotspots of by-product proteins from aquatic products mainly focused on two aspects: innovative recycling methods and enhancing the added value of utilization. With the continuous development of molecular biology and polymer science, the researchers could modify the by-product proteins from aquatic products through physical, chemical and biological methods, which could not only improve and enhance their biological properties, but also broaden the applications of related products range. China's aquaculture output has ranked first in the world for 28 consecutive years. However, the research on the high-value utilization and industrial application of aquatic by-products needed to be further improved. Moreover, from the perspective of industrial development, whether it was the introduction and development of by-product development technology, or the formulation and management of related product standards, China is facing many practical problems and challenges. Consequently, it is necessary to focus on the current situation and development trend, carry out the next step of planning, which will introduce new vitality to the aquatic product processing industry. In the future, the commercial development of by-product proteins from aquatic products will bring more possibilities and development prospects. More and more foods and drugs prepared using by-product proteins will be approved and promoted, which will provide a driving force for the further development of aquatic products industry.
  • 加载中
  • [1] Fisheries and Aquaculture Department FAO. The state of world fisheries and aquaculture[EB/OL]. (2020-05-30) [2020-09-01]. https://doi.org/10.4060/ca9229en.
    [2] Olsen R L, Toppe J, Karunasagar I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish[J]. Trends in Food Science & Technology, 2014, 36(2): 144-151.
    [3] Ghaly A E, Ramakrishnan V V, Brooks M S, et al. Fish processing wastes as a potential source of proteins, amino acids and oils: a critical review[J]. Journal of Microbial & Biochemical Technology, 2013, 5(4): 107-129.
    [4] Menon V V, Lele S S. Nutraceuticals and bioactive compounds from seafood processing waste[M]//Kim S K. Springer handbook of marine biotechnology. Berlin, Heidelberg: Springer, 2015: 1405-1425.
    [5] Halim N R A, Yusof H M, Sarbon N M. Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review[J]. Trends in Food Science & Technology, 2016, 51: 24-33.
    [6] Choudhury G S, Bublitz C G. Computer-based controls in fish processing industry[M]//Mittal G S. Computerized control systems in the food industry. New York: Marcel Dekker Inc., 1996: 513-538.
    [7] Choudhury G S, Gogoi B K. Extrusion processing of fish muscle[J]. Journal of Aquatic Food Product Technology, 1996, 4(4): 37-67. doi: 10.1300/J030v04n04_05
    [8] Kristinsson H G, Rasco B A. Fish protein hydrolysates: production, biochemical, and functional properties[J]. Critical Reviews in Food Science and Nutrition, 2000, 40(1): 43-81. doi: 10.1080/10408690091189266
    [9] Kim Y S, Park J W, Choi Y J. New approaches for the effective recovery of fish proteins and their physicochemical characteristics[J]. Fisheries Science, 2003, 69(6): 1231-1239. doi: 10.1111/j.0919-9268.2003.00750.x
    [10] Abdelmoez W, Nakahasi T, Yoshida H. Amino acid transformation and decomposition in saturated subcritical water conditions[J]. International Journal of Chemical Reactor Engineering, 2007, 46(16): 5286-5294.
    [11] Tavakoli O, Yoshida H. Conversion of scallop viscera wastes to valuable compounds using sub-critical water[J]. Green Chemistry, 2006, 8(1): 100-106. doi: 10.1039/B507441J
    [12] Cinq-Mars C D, Li-Chan E C Y. Optimizing angiotensin I-converting enzyme inhibitory activity of Pacific hake (Merluccius productus) fillet hydrolysate using response surface methodology and ultrafiltration[J]. Journal of Agricultural and Food Chemistry, 2007, 55(23): 9380-9388. doi: 10.1021/jf0713354
    [13] Doyen A, Beaulieu L, Saucier L, et al. Demonstration of in vitro anticancer properties of peptide fractions from a snow crab by-products hydrolysate after separation by electrodialysis with ultrafiltration membranes[J]. Separation and Purification Technology, 2011, 78(3): 321-329. doi: 10.1016/j.seppur.2011.01.037
    [14] Zhong Q, Jin M. Enhanced functionalities of whey proteins treated with supercritical carbon dioxide[J]. Journal of Dairy Science, 2008, 91(2): 490-499. doi: 10.3168/jds.2007-0663
    [15] Dunford N T, Temelli F, LeBlanc E. Supercritical CO2 extraction of oil and residual proteins from Atlantic mackerel (Scomber scombrus) as affected by moisture content[J]. Journal of Food Science, 1997, 62(2): 289-294. doi: 10.1111/j.1365-2621.1997.tb03987.x
    [16] Park J W, Yongsawatdigul J, Kolbe E. Proteolysis and gelation of fish proteins under ohmic heating[M]//Shahidi F, Ho C T, van Chuyen N. Process-induced chemical changes in food. Advances in Experimental Medicine and Biology. Boston: Springer, 1998, 434: 25-34.
    [17] Kanjanapongkul K, Tia S, Wongsa-Ngasri P, et al. Coagulation of protein in surimi wastewater using a continuous ohmic heater[J]. Journal of Food Engineering, 2009, 91(2): 341-346. doi: 10.1016/j.jfoodeng.2008.09.010
    [18] Gehring C K, Gigliotti J C, Moritz J S, et al. Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: a review[J]. Food Chemistry, 2011, 124(2): 422-431. doi: 10.1016/j.foodchem.2010.06.078
    [19] Sanmartín E, Arboleya J C, Villamiel M, et al. Recent advances in the recovery and improvement of functional proteins from fish processing by-products: use of protein glycation as an alternative method[J]. Comprehensive Reviews in Food Science and Food Safety, 2009, 8(4): 332-344. doi: 10.1111/j.1541-4337.2009.00083.x
    [20] Arnesen J A, Gildberg A. Extraction of muscle proteins and gelatine from cod head[J]. Process Biochemistry, 2006, 41(3): 697-700. doi: 10.1016/j.procbio.2005.09.001
    [21] Shahidi F, Han X Q, Synowiecki J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus)[J]. Food Chemistry, 1995, 53(3): 285-293. doi: 10.1016/0308-8146(95)93934-J
    [22] Rao M B, Tanksale A M, Ghatge M S, et al. Molecular and biotechnological aspects of microbial proteases[J]. Microbiology and Molecular Biology Reviews, 1998, 62(3): 597-635. doi: 10.1128/MMBR.62.3.597-635.1998
    [23] Baek H H, Cadwallader K R. Enzymatic hydrolysis of crayfish processing by‐products[J]. Journal of Food Science, 1995, 60(5): 929-935. doi: 10.1111/j.1365-2621.1995.tb06264.x
    [24] Rodríguez-Díaz J C, Kurozawa L E, Netto F M, et al. Optimization of the enzymatic hydrolysis of blue shark skin[J]. Journal of Food Science, 2011, 76(7): C938-C949. doi: 10.1111/j.1750-3841.2011.02318.x
    [25] Duan Z H, Wang J L, Yi M H, et al. Recovery of proteins from silver carp by-products with enzymatic hydrolysis and reduction of bitterness in hydrolysate[J]. Journal of Food Process Engineering, 2010, 33(5): 962-978.
    [26] Clemente A. Enzymatic protein hydrolysates in human nutrition[J]. Trends in Food Science & Technology, 2000, 11(7): 254-262.
    [27] Bataille M P, Bataille P F. Extraction of proteins from shrimp processing waste[J]. Journal of Chemical Technology and Biotechnology, 1983, 33(4): 203-208.
    [28] Hofman K, Hall B, Cleaver H, et al. High-throughput quantification of hydroxyproline for determination of collagen[J]. Analytical Biochemistry, 2011, 417(2): 289-291. doi: 10.1016/j.ab.2011.06.019
    [29] Li Y F, Zeng Q H, Liu G, et al. Effects of ultrasound-assisted basic electrolyzed water (BEW) extraction on structural and functional properties of Antarctic krill (Euphausia superba) proteins[J]. Ultrasonics Sonochemistry, 2021, 71: 105364. doi: 10.1016/j.ultsonch.2020.105364
    [30] 邹烨, 蔡盼盼, 王立, 等. 超声辅助酶法提取中华鳖裙边胶原蛋白及其热稳定性能[J]. 食品科学, 2018, 39(2): 254-259. doi: 10.7506/spkx1002-6630-201802040Zou Y, Cai P P, Wang L, et al. Ultrasonic-assisted enzymatic extraction and thermal stability of collagen from soft-shelled turtle calipash[J]. Food Science, 2018, 39(2): 254-259 (in Chinese). doi: 10.7506/spkx1002-6630-201802040
    [31] Larsen T, Thilsted S H, Kongsbak K, et al. Whole small fish as a rich calcium source[J]. British Journal of Nutrition, 2000, 83(2): 191-196. doi: 10.1017/S0007114500000246
    [32] Shahidi F. Maximising the value of marine by-products[M]. Cambridge: Woodhead Publishing, 2006.
    [33] Atef M, Ojagh S M. Health benefits and food applications of bioactive compounds from fish byproducts: a review[J]. Journal of Functional Foods, 2017, 35: 673-681. doi: 10.1016/j.jff.2017.06.034
    [34] Cheung R C F C, Ng T B, Wong J H. Marine peptides: bioactivities and applications[J]. Marine Drugs, 2015, 13(7): 4006-4043. doi: 10.3390/md13074006
    [35] Gonzàlez-Tello P, Camacho F, Jurado E, et al. Enzymatic hydrolysis of whey proteins: I. Kinetic models[J]. Biotechnology and Bioengineering, 1994, 44(4): 523-528. doi: 10.1002/bit.260440415
    [36] Ehrlich H. Biological materials of marine origin[M]. Dordrecht, Netherlands: Springer, 2010.
    [37] Jung W K, Kim S K. Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame[J]. European Food Research and Technology, 2007, 224(6): 763-767. doi: 10.1007/s00217-006-0371-4
    [38] 赵珺, 汪少芸, 李晓坤. 天然抗冻多肽的制备、分离及细菌低温保护活性研究[J]. 福州大学学报(自然科学版), 2013, 41(1): 121-126.Zhao J, Wang S Y, Li X K. Preparation, isolation and hypothermia protection activity on bacteria of natural antifreeze peptides[J]. Journal of Fuzhou University (Natural Science Edition), 2013, 41(1): 121-126 (in Chinese).
    [39] Mueller J P, Liceaga A M. Characterization and cryoprotection of invasive silver carp (Hypophthalmicthys molitrix) protein hydrolysates[J]. Journal of Aquatic Food Product Technology, 2016, 25(1): 131-143. doi: 10.1080/10498850.2013.832452
    [40] 郭芳. 利用鲍鱼内脏蛋白制备海鲜调味品的研究[D]. 福州: 福建农林大学, 2012.Guo F. Study on producing seafood flavoring by protein of abalone viscera[D]. Fuzhou: Fujian Agriculture and Forestry University, 2012 (in Chinese).
    [41] 余杰, 陈美珍. 酶法制备水解鳗鱼头蛋白及其应用的研究[J]. 食品工业科技, 2001, 21(1): 45-47. doi: 10.3969/j.issn.1002-0306.2001.01.017Yu J, Chen M L. Study on the preparation and application of hydrolyzed eel head protein by enzymatic methods[J]. Science and Technology of Food Industry, 2001, 21(1): 45-47 (in Chinese). doi: 10.3969/j.issn.1002-0306.2001.01.017
    [42] Gildberg A, Arnesen J A, Sæther B S, et al. Angiotensin I-converting enzyme inhibitory activity in a hydrolysate of proteins from Northern shrimp (Pandalus borealis) and identification of two novel inhibitory tri-peptides[J]. Process Biochemistry, 2011, 46(11): 2205-2209. doi: 10.1016/j.procbio.2011.08.003
    [43] Ambigaipalan P, Shahidi F. Bioactive peptides from shrimp shell processing discards: antioxidant and biological activities[J]. Journal of Functional Foods, 2017, 34: 7-17. doi: 10.1016/j.jff.2017.04.013
    [44] Djellouli M, Elvira López-Caballero M, Arancibia M Y, et al. Antioxidant and antimicrobial enhancement by reaction of protein hydrolysates derived from shrimp by-products with glucosamine[J]. Waste and Biomass Valorization, 2020, 11: 2491-2505. doi: 10.1007/s12649-019-00607-y
    [45] Harnedy P A, FitzGerald R J. Bioactive peptides from marine processing waste and shellfish: a review[J]. Journal of Functional Foods, 2012, 4(1): 6-24. doi: 10.1016/j.jff.2011.09.001
    [46] Feng S M, Limwachiranon J, Luo Z S, et al. Preparation and purification of angiotensin-converting enzyme inhibitory peptides from hydrolysate of shrimp (Litopenaeus vannamei) shell waste[J]. International Journal of Food Science & Technology, 2016, 51(7): 1610-1617.
    [47] Cudennec B, Ravallec-Plé R, Courois E, et al. Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells[J]. Food Chemistry, 2008, 111(4): 970-975. doi: 10.1016/j.foodchem.2008.05.016
    [48] Farag A A, Ismail A S, Migahed M A. Environmental-friendly shrimp waste protein corrosion inhibitor for carbon steel in 1 M HCl solution[J]. Egyptian Journal of Petroleum, 2018, 27(4): 1187-1194. doi: 10.1016/j.ejpe.2018.05.001
    [49] Ismail A S, Farag A A. Experimental, theoretical and simulation studies of extracted crab waste protein as a green polymer inhibitor for carbon steel corrosion in 2 M H3PO4[J]. Surfaces and Interfaces, 2020, 19: 100483. doi: 10.1016/j.surfin.2020.100483
    [50] Viswanathan T V, Fontenot J P, Baker S M, et al. Effects of feeding crab processing waste and other protein supplements on growth and ruminal characteristics of steers fed high-roughage diets[J]. The Professional Animal Scientist, 2007, 23(5): 482-489. doi: 10.1532/S1080-7446(15)31009-3
    [51] 陶学明, 王泽南, 余顺火, 等. 梭子蟹下脚料加工海鲜调味料的工艺研究[J]. 食品科技, 2009, 34(7): 217-220, 224.Tao X M, Wang Z N, Yu S H, et al. Study on technology of swimming crab waste processing seafood condiment[J]. Food Science and Technology, 2009, 34(7): 217-220, 224 (in Chinese).
    [52] Tsai J S, Chen J L, Pan B S. ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria)[J]. Process Biochemistry, 2008, 43(7): 743-747. doi: 10.1016/j.procbio.2008.02.019
    [53] Je J Y, Park P J, Byun H G, et al. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis[J]. Bioresource Technology, 2005, 96(14): 1624-1629. doi: 10.1016/j.biortech.2005.01.001
    [54] Je J Y, Park J Y, Jung W K, et al. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas[J]. Food Chemistry, 2005, 90(4): 809-814. doi: 10.1016/j.foodchem.2004.05.028
    [55] Fitzgerald R J, Murray B A. Bioactive peptides and lactic fermentations[J]. International Journal of Dairy Technology, 2006, 59(2): 118-125. doi: 10.1111/j.1471-0307.2006.00250.x
    [56] Sasaki C, Tamura S, Tohse R, et al. Isolation and identification of an angiotensin I-converting enzyme inhibitory peptide from pearl oyster (Pinctada fucata) shell protein hydrolysate[J]. Process Biochemistry, 2019, 77: 137-142. doi: 10.1016/j.procbio.2018.11.017
    [57] Lee T G, Maruyama S. Isolation of HIV-1 protease-inhibiting peptides from thermolysin hydrolysate of oyster proteins[J]. Biochemical and Biophysical Research Communications, 1998, 253(3): 604-608. doi: 10.1006/bbrc.1998.9824
    [58] McFadden D W, Riggs D R, Jackson B J, et al. Keyhole limpet hemocyanin, a novel immune stimulant with promising anticancer activity in Barrett's esophageal adenocarcinoma[J]. The American Journal of Surgery, 2003, 186(5): 552-555. doi: 10.1016/j.amjsurg.2003.08.002
    [59] Riggs D R, Jackson B, Vona-Davis L, et al. In vitro anticancer effects of a novel immunostimulant: Keyhole limpet hemocyanin[J]. Journal of Surgical Research, 2002, 108(2): 279-284. doi: 10.1006/jsre.2002.6548
    [60] Bourseau P, Vandanjon L, Jaouen P, et al. Fractionation of fish protein hydrolysates by ultrafiltration and nanofiltration: impact on peptidic populations[J]. Desalination, 2009, 244(1-3): 303-320. doi: 10.1016/j.desal.2008.05.026
    [61] Kim S K, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: a review[J]. Journal of Functional Foods, 2010, 2(1): 1-9. doi: 10.1016/j.jff.2010.01.003
    [62] Nesse K O, Nagalakshmi A P, Marimuthu P, et al. Safety evaluation of fish protein hydrolysate supplementation in malnourished children[J]. Regulatory Toxicology and Pharmacology, 2014, 69(1): 1-6. doi: 10.1016/j.yrtph.2014.02.009
    [63] Seo S H, Cho S J. Changes in allergenic and antinutritional protein profiles of soybean meal during solid-state fermentation with Bacillus subtilis[J]. LWT, 2016, 70: 208-212. doi: 10.1016/j.lwt.2016.02.035
    [64] 刘丽娜. 水产动物胶原蛋白研究现状及发展前景[J]. 农产品加工(学刊), 2014(9): 58-59, 63.Liu L N. Research status and prospects of aquatic animal collagen[J]. Academic Periodical of Farm Products Processing, 2014(9): 58-59, 63 (in Chinese).
  • Relative Articles

    [1] ZHOU Deqing, LI Na, WANG Shanshan, LIU Nan, MA Yujie. Research progress of antioxidant peptides from aquatic by-product. Journal of fisheries of china, 2019, 43(1): 188-196.  doi: 10.11964/jfc.20180811427
    [2] ZHAO Yong, LIU Jing, WU Qian, CAO Huan, OU Jie, PAN Yingjie. Nutritional and health efficacy of aquatic products for humans with the replenishment of terrestrial resources. Journal of fisheries of china, 2021, 45(7): 1235-1247.  doi: 10.11964/jfc.20210412721
    [3] WU Yanyan, SHI Hui, LI Laihao, YANG Xianqing, LIN Wanling, CHEN Shengjun. Research status and prospects of vacuum freeze-drying technology for aquatic products. Journal of fisheries of china, 2019, 43(1): 197-205.  doi: 10.11964/jfc.20180911453
    [4] XIANG Yue, SUN Chengfeng, LI Laihao, YANG Xianqing, WU Yanyan, CEN Jianwei, WEI Ya, LI Rui, ZHAO Yongqiang. Correlation between changes in freshness and protein biochemical properties of Lateolabrax japonicas during iced storage. Journal of fisheries of china, 2021, 45(2): 283-295.  doi: 10.11964/jfc.20200312174
    [5] XIANG Yue, SUN Chengfeng, LI Laihao, YANG Xianqing, WU Yanyan, CEN Jianwei, WEI Ya, LI Rui, ZHAO Yongqiang. Effects of agar-oligosaccharides and EGCG on the freshness and protein biochemical change of sea bass (Lateolabrax japonicus) fillets during ice storage. Journal of fisheries of china, 2021, 45(7): 1007-1020.  doi: 10.11964/jfc.20210312683
    [6] LIU Shucheng, DENG Qianlin, HUANG Wanyou, JI Hongwu, GAO Jing, MAO Weijie, HAO Jiming. Effects of high hydrostatic pressure on protein and microstructure of Litopenaeus vannamei. Journal of fisheries of china, 2017, 41(6): 877-887.  doi: 10.11964/jfc.20170110674
    [7] HU Yi, CHEN Yunfei, ZHANG Dehong, CHEN Tuan, LIU Bo, GAO Qiping. Effects of different dietary carbohydrate and protein levels on growth, intestinal digestive enzymes and serum indexes in large-size grass carp (Ctenopharyngodon idella). Journal of fisheries of china, 2018, 42(5): 777-786.  doi: 10.11964/jfc.20170510849
    [8] WANG Shuang, LI Zhanfu, LI Hong, LI Xuelian, LEI Denghua, ZHU Chengke, LIN Shimei, CHEN Yongjun, LUO Li. Dietary protein requirement of juvenile giant salamander (Andrias davidianus). Journal of fisheries of china, 2020, 44(1): 99-110.  doi: 10.11964/jfc.20181111533
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2) / Tables(2)

Article views(1149) PDF downloads(20) Cited by()

Related
Proportional views

Research progress of recycling and high-value utilization of protein from aquatic by-products

    Corresponding author: ZHAO Yong, yzhao@shou.edu.cn
    Corresponding author: WANG Jingjing, w_j2010@126.com
  • 1. College of Food Sciences and Technology, Shanghai Ocean University, Shanghai    201306, China
  • 2. Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai    201306, China
  • 3. Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Shanghai Ocean University, Ministry of Agriculture and Rural Affairs, Shanghai    201306, China
  • 4. Department of Food Science, Foshan University, Foshan    528000, China

Abstract: The production of aquatic products is always increasing worldwide, due to their high nutritional value. However, a large number of by-products are produced during the consumption and processing of aquatic products, causing serious resources waste and environmental pollution. On this basis, the by-products of aquatic products were developed and applied in many fields according to their different characteristics. Among them, the by-product proteins have been widely recycled and utilized in practice due to its unique functions and high added value. Therefore, this article reviewed the typically physical, chemical and biological methods for recycling the proteins from aquatic products. Meanwhile, we also introduced the research progress in the high-value utilization of by-product proteins from fish, crustaceans and shellfish, as well as their future development trend, with the purpose of further enhancing the comprehensive utilization of aquatic by-products and promoting the high-quality development of aquatic product industry. Generally, the aquatic products from fishing or aquaculture often needed to be processed before their marketing. However, massive by-products were left after being processed, and they must undergo further treatment to obtain end-products with high added value. Among these by-products, proteins accounted for a large proportion and had higher nutritional value. The efficiency of traditional technology to recycle by-products of different aquatic products was limited, and the yield was very low, therefore, it was difficult to potently recycle a large number of by-product proteins from aquatic products. In the past century, the scientists in academic and industrial community made great efforts to fully recycle the by-product proteins of aquatic products, and achieved many end-products through physical, chemical and biological methods. With the advance and innovation of science and technology, the recycling conditions of by-product proteins from aquatic products have been greatly optimized, and the recyclable types of by-products have greatly expanded, as well as the proteins yield has been significantly improved. Therefore, the research hotspots of by-product proteins from aquatic products mainly focused on two aspects: innovative recycling methods and enhancing the added value of utilization. With the continuous development of molecular biology and polymer science, the researchers could modify the by-product proteins from aquatic products through physical, chemical and biological methods, which could not only improve and enhance their biological properties, but also broaden the applications of related products range. China's aquaculture output has ranked first in the world for 28 consecutive years. However, the research on the high-value utilization and industrial application of aquatic by-products needed to be further improved. Moreover, from the perspective of industrial development, whether it was the introduction and development of by-product development technology, or the formulation and management of related product standards, China is facing many practical problems and challenges. Consequently, it is necessary to focus on the current situation and development trend, carry out the next step of planning, which will introduce new vitality to the aquatic product processing industry. In the future, the commercial development of by-product proteins from aquatic products will bring more possibilities and development prospects. More and more foods and drugs prepared using by-product proteins will be approved and promoted, which will provide a driving force for the further development of aquatic products industry.

  • 水产品是人类膳食营养和经济收入的重要来源。据统计,2018年全球水产品总产量约为2.11亿t,水产养殖占水产品总产量的46%,全球捕捞渔业和水产养殖产量正在稳定增长[1]。水产品产量的急剧增长导致副产物的大量增加,据统计,水产品经过工业化技术加工后,其副产物可占总产量的30%~70%[2],主要包括鱼鳍、鱼骨、鱼及其内脏,以及甲壳类和贝类的壳等,其中大部分被当作废弃物丢弃。

    水产品副产物含有蛋白质、甲壳质、脂肪酸、类胡萝卜素和可提取的矿物质等化合物,具有极高的利用价值,其中,水产品副产物蛋白的高值化利用研究一直受到人们的极大关注。研究表明,水产品的头部、皮肤、内脏和黑肌肉等副产物含有大量的蛋白质,含量达14%~16%[3]。并且与其他生物蛋白相比,水产品蛋白具有更高的营养价值,且易消化吸收,更适合年龄较小和年龄偏大的特定人群[4]。除了高营养价值以外,水产品副产物蛋白还具有结合水能力、乳化能力、成膜能力、起泡能力和成胶能力等独特功能特性[5]。然而,当前水产品加工所产生的副产物高值化利用率较低,仅有小部分被当作普通饲料或肥料,大部分则直接被丢弃在环境中,导致了严重的资源浪费和环境污染[6-7]

    因此,采用新型技术高效回收水产品副产物蛋白,提高目标蛋白质的回收效率,保护目标蛋白质的营养品质,将为水产品产业的转型发展带来更多机遇。鉴于此,本文综述了现阶段广泛用于回收水产品副产物蛋白的物理学、化学和生物学方法,以及提高副产物蛋白高值化利用的研究进展,并对水产品副产物蛋白未来的发展趋势进行展望,旨在进一步提升水产品副产物资源的综合利用潜力,促进水产品加工业高质量发展。

    • 无论是通过渔业捕获还是水产养殖获得的水产品,基本都需要经过深加工这一关键环节,然而,加工后留下的副产物也需要经过处理才能进一步获得利用价值。使用传统技术对不同水产品副产物进行回收加工的有效性有限,并且产品得率较低,大量富含蛋白质的水产品副产物难以高效回收。近1个世纪以来,学术界和工业界为了实现充分回收水产品副产物蛋白这一目标,共同作出了巨大努力,取得了一系列成果[8](图1)。随着科技的进步,水产品副产物蛋白的回收条件得到了大幅优化,回收范围也得到进一步扩大,蛋白质回收率明显提高。

      Figure 1.  Flow chart of protein extraction from aquatic by-product

    • 水产副产物蛋白可以通过亚临界水分解、膜过滤、萃取和欧姆加热等物理方法分离[9]

      亚临界水是指在一定压力的条件下,将水加热到高于沸点(100 °C)但低于临界温度(374 °C),仍然保持液体的状态。通过压力和温度控制亚临界水,使水的极性在较大范围内发生变化,电离生成了大量H+和OH,变现出强酸强碱的性质,具备了水解功能,从而实现对天然产物中水溶性和脂溶性有效成分的连续提取,同时兼具选择性提取功能[10]。Tavakoli等[11]研究表明,亚临界水分解是从扇贝内脏副产物中获得可溶性蛋白质的有效方法,在240 °C下处理50 min时,氨基酸回收率最高可达15%,而且具有经济、绿色的优点。

      膜过滤是分离和纯化特定蛋白或蛋白酶的有效技术,将其用于酶促水解过程中,能够基于分子量对水解产物进行分离。超滤膜技术具有能耗低、目标物质性质稳定等优点,并且可以同时回收和浓缩可溶性蛋白[12]。Doyen等[13]研究表明,利用超滤膜分离技术可以选择性回收雪蟹(Chionoecetes opilio)副产物蛋白肽,并且具有较高的回收率,该技术还可以同时分离雪蟹副产物蛋白水解产物中的阴离子和阳离子肽。

      超临界CO2萃取技术也是分离水产品副产物蛋白的一种新型技术。超临界CO2是一种具有特定密度的液体,兼具气体的扩散性和黏性,同时,超临界CO2表面张力为0,能够渗透到复杂的组织结构中[14]。由于加工条件相对容易达到(临界温度:31.1 °C;临界压力:7.38 MPa),且对环境的影响相对较小,超临界CO2萃取技术具有较好的应用前景。Dunford等[15]研究表明,采用超临界CO2萃取技术分离鱼副产物蛋白,不仅具有较高的回收率,而且可以将蛋白质水分含量降低至10.2%,因为极低水分含量也是提取蛋白质的一种优势。

      欧姆加热技术的原理是利用食品物料的电导特性,当电流通过食品,在其内部将电能转化为热能,蛋白质在加热条件下凝结,进而从混合物质中分离出来。这种技术通常用于鱼糜制品加工工业中,能够很好地凝结鱼糜废水中的蛋白质,并且具有分离过程耗时短、产品受热均匀等优异特性[16]。Kanjanapongkul等[17]已经开发出一种连续的欧姆加热系统,用于凝结鱼糜废水中的蛋白质,从而达到扩大回收范围和效率的目标。

    • 化学方法是分离水产品副产物蛋白最常见的方法,具有操作简便、回收率高等特点。

      等电增溶/沉淀(ISP)技术是一种从水产品副产物中回收蛋白质广泛采用的化学方法。ISP处理依赖于肌肉蛋白质的等电点(pI),不同的蛋白质具有不同的pI。当蛋白质处于其pI时,溶解度最低,易形成沉淀。利用ISP回收蛋白质可用于开发食品和膳食补充剂,Gehring等[18]研究表明,ISP处理能够有效回收鱼副产物蛋白,同时较好地保留了蛋白质的功能和营养价值。

      糖基化反应是分离水产品副产物蛋白的一种简单、有效且安全的方法,该方法避免了化学试剂的使用。温和的糖基化反应通常会增强蛋白质的溶解度,引起糖化蛋白的聚合,从而改善其凝胶性能和乳化性能。因此,糖基化反应可以从鱼类副产物中回收功能蛋白质,从而大幅度提高鱼类副产物的经济附加值[19]

      pH值转换法也是一种常见的化学方法。Arnesen等[20]研究表明,鳕的头部是蛋白质的极佳来源,基于此,在室温下利用温和pH值转换法通过调配特定NaOH (pH 11)和HCl (pH 2~2.6)溶液处理鳕鱼糜,可以有效提取肌肉蛋白,并且,利用此方法还能够在高温和酸性条件下提取结缔组织和骨骼中的明胶。

    • 生物酶解技术是分离水产品副产物蛋白的主要方法,目前法国、日本和东南亚等国已经采取大规模酶法加工技术提取水产品副产物蛋白,并且生产出可以广泛应用的产品[21]

      蛋白水解酶是食品工业中使用率最高的一类酶,主要来源于动物、植物和微生物。由于动植物蛋白酶无法满足当前市场的需求,微生物蛋白酶的需求量则不断增加。微生物蛋白酶主要由芽孢杆菌属(Bacillus)产生,一般分为中性蛋白酶和碱性蛋白酶:中性蛋白酶在pH 5~8时具有活性和低温耐受性,然而,碱性蛋白酶在pH 7~10时具有活性和广泛的特异性[22]

      Shahidi等[21]研究发现,经过碱性蛋白酶处理获得的鱼类副产物蛋白水解物具有较好的功能特性,氨基酸含量丰富,拥有较高的营养价值。Baek等[23]利用0.3%碱性蛋白酶,在65 °C和pH值8~9的条件下提取克氏原螯虾(Procambarus clarkii) 加工副产物蛋白,最高得率达到75%。Rodríguez-Díaz等[24]研究表明,利用商业蛋白酶可以在最佳温度51 °C和pH值7.0条件下分离大青鲨(Prionace glauca)皮肤中的蛋白质,蛋白质水解度为19.3%、回收率达到90.3%。Duan等[25]利用中性蛋白酶与风味蛋白酶复合,在pH值7.5和50 °C最佳水解条件下回收鲢(Hypophthalmichthys molitrix)副产物蛋白,回收率达到82%。基于这些研究,可以发现生物酶解技术受多种因素的调控,并且提取蛋白质的回收率较高,对环境污染较小,是目前具有广阔发展前景的一种技术[26]

    • 目前,将化学与物理学方法结合是提取水产品副产物蛋白的一种有效方法。Bataille等[27]将虾头在0.2 mol/L氢氧化钙溶液中消化处理60 min以上,再经过沸水萃取,能够回收高达70%的虾副产物蛋白。在室温下,Hofman等[28]利用0.6 mol/L盐酸对脱脂干燥的鱼骨进行脱钙处理制备胶原蛋白,这是回收鱼骨副产物蛋白方法中比较有效的一种方式。Li等[29]研究证明,超声辅助碱性电解水是一种新型高效的提取南极磷虾(Euphausia superba)蛋白质的方法,这种方法减少了碱性化学试剂的用量,保护了蛋白质氨基酸活性基团不被氧化,提高了南极磷虾蛋白稳定乳液的能力。一般情况下,生物学方法需要控制在相应化学条件下(如pH、盐离子浓度等),才能更好地发挥生物酶的催化活性,从而提高蛋白质的回收率。此外,物理学方法辅助生物学方法对回收水产品副产物蛋白具有更好的作用。邹烨等[30]利用超声波辅助生物酶提取中华鳖(Trionyx sinensis)裙边的胶原蛋白,发现胶原蛋白的热稳定性显著优于常规生物酶法提取的,并且在超声时间43 min、超声功率176 W的条件下,胶原蛋白的得率达到74.5%。

    2.   水产品副产物蛋白的高值化利用
    • 开创水产品副产物蛋白的回收新方法是提高蛋白质高值化利用的基础和关键。一直以来,大量水产品副产物蛋白未被充分利用,造成了大量资源的浪费和流失,甚至对环境产生重大危害。大宗水产品主要包括鱼类、甲壳类和贝类等,其副产物蛋白在食品、药品等方面的应用不断进步(图2),尤其是高附加值蛋白质的利用率逐渐提高,创造了巨大的经济和社会价值。

      Figure 2.  Application of by-product protein from aquatic products

    • 鱼类种类繁多,在加工过程中产生的副产物占了很大比重。鱼类副产物蛋白中含有丰富的必需氨基酸,可以直接作为补充人类营养的蛋白质来源[31]。然而,除了直接利用鱼类副产物蛋白以外,蛋白水解物(FPH)的高值化利用也较为普遍。鱼类副产物蛋白水解物不仅保留了较高的必需氨基酸含量,还具有良好的功能特性,将其添加到食品中,可以提高食品的保水性、质地、胶凝性和乳化性[32]

      鱼类副产物蛋白水解物的另一个重要用途是制备生物活性肽[33](表1)。大量研究表明,鱼类副产物蛋白多肽具有降血压、抑制血管紧张素转换酶(ACE)、免疫调节和螯合金属离子等生物活性,因此,鱼类副产物蛋白生物活性肽用于治疗多种生理疾病,如焦虑、糖尿病、肥胖和高血压等[34]。Halim等[5]在黄鳍金枪鱼(Thunnus albacores)、沙丁鱼、鲐(Pneumatophorus japonicus)以及软体动物和甲壳类动物的头部、内脏、皮肤、鳃和其他组织副产物中发现了具有抗氧化和抗菌特性的活性肽。水产品副产物蛋白酶解物大多数也由多肽组成,富含氨基酸,具有较高的营养价值和肠道吸收特性,能够为婴儿和患病成人提供特殊的饮食[35]

      鱼类
      fish
      来源
      origin
      生物活性
      bioactivities
      肽序列
      peptide sequence
      鳕 cod 骨架 抗氧化活性、抑制ACE
      低眼巨鲇 Pangasius hypophthalmus 抗氧化活性、抑制ACE VCSV, CAAP
      MEVFVP, VSQLTR
      长尾鳕 Macrouroidei 骨架 抗氧化活性、钙亲和力 GSTVPERTHPACPDFN,
      VLSGGTTMYASLYAE
      大鳞新灯笼鱼 Neoscopelus macrolepidotus 神经保护
      抑制ACE
      PTT, AT
      AVCLP
      黄线狭鳕 Gadus chalcogrammus 骨架 抑制ACE、抗氧化活性、钙亲和力 PGASTAGA,
      LPHSGT,
      VLSGGTTMAMYTLV
      日本叉牙鱼 Arctoscopus japonicus 抗氧化活性 ATSHH
      欧洲鲽 Pleuronectes platessa 骨架 抗氧化活性、抗凝血性 RPDFDLEPPY
      大青鲨 Prionace glauca 抑制ACE CP, GT, MP, PG
      莫桑比克罗非鱼 Oreochroms mossambcus 骨架 抗氧化活性、抑制ACE ACGT, ATAGT
      黄鳍金枪鱼 T. albacares 骨架 降血压 GALGLTTTVSATSPPLTLATP

      Table 1.  Bioactive peptides of fish by-product protein hydrolysate[33]

      鱼类副产物之一的鱼皮可作为分离胶原蛋白和明胶的潜在来源。与其他蛋白相比,胶原蛋白和明胶具有独特的生物相容性,这种特性归因于含量丰富的甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)和脯氨酸(Pro)等非极性氨基酸[5]。胶原蛋白的主要实验和临床应用包括愈合伤口、预防和治疗骨和软组织感染等,同时,作为药物载体可以控制目标部位的药物浓度释放,此外,还可以在组织、器官和细胞的形成中发挥积极作用[36]。鱼皮表面完全覆盖着约30%的鳞片,Jung等[37]研究表明,鳞片是由含有18种氨基酸的蛋白质组成,其中甘氨酸(Gly)、谷氨酸(Glu)、羟脯氨酸(Hyp)、精氨酸(Arg)和天冬氨酸(Asp)在鱼鳞蛋白中比例较高,且与钙具有高度的亲和力,对人体骨骼的生长具有积极作用。

      有关鱼类副产物中抗冻蛋白的研究也在逐渐深入。赵珺等[38]运用酸性蛋白酶从大青鲨皮胶原蛋白中分离制备特定的抗冻肽,这种亲水肽通过诱导生物耐寒性基因的表达使其表现出抗冻性能,经过处理后可以用作益生菌的一种新型优异的低温保护剂。Mueller等[39]研究表明,鲢水解物的抗冻活性比普通冷冻保护剂效果更好,即使经过6次循环冻融,也能保持鲢鱼糜的功能特性。因此,研究水产品副产物蛋白的冷冻保护功能与作用机制,进而开发新型高效的冷冻保护剂保护冷冻食品的品质,具有巨大的市场前景和经济价值。

      利用生物酶解技术制备反应型调味料是目前国内外的研究热点。郭芳[40]采用双酶分步水解方法对鲍鱼内脏副产物进行酶解处理,制备得到的海鲜调味汁澄清透明、甜咸适中,口感较好,具有广阔的市场应用前景。余杰等[41]利用复合酶解技术生产的鳗鱼头蛋白水解物克服了中性蛋白酶水解物苦味重的缺点,使得以鳗鱼头蛋白水解物为基料的复合调味料风味浓郁、营养丰富,为鱼类副产物的综合利用开辟了一条新途径。

    • 水产品中甲壳类生物主要包括虾、蟹等,其头、尾和躯壳通常都可以当作副产物处理,并且这些副产物中蛋白质含量占比也很大。虾副产物中含有高质量的蛋白质,用蛋白酶水解时,70%以上蛋白质可作为水解物进行回收,而且蛋白水解物具有多种功能和生物学特性[42]。使用各种生物酶制剂制备的虾壳水解物(SSH)和虾壳蛋白水解物(SPH)均能有效清除自由基,具有良好的还原能力和亚铁螯合活性[43]。Djellouli等[44]将虾壳蛋白质水解产物与葡萄糖胺在100 °C条件下加热可以提高其抗菌活性,这是由于蛋白质水解产物的糖基化增强了其抑制细菌生长的能力,可以用作抗菌剂。

      在甲壳类生物的副产物中,蛋白质水解物也含有多种生物活性肽[45](表2)。Feng等[46]研究发现,使用中性蛋白酶水解虾壳产生一种分子量小于5 ku的血管紧张素转换酶(ACE)抑制肽,该肽对血管紧张素转换酶抑制率达到84.04%。同样,使用胰蛋白酶、糜蛋白酶、胃蛋白酶和碱性蛋白酶制备SPH,并利用凝胶色谱对ACE抑制活性最优组分进行分离纯化,通过质谱方法鉴定了3种潜在的生物活性肽。此外,虾副产物水解物还具有降血糖、抗增殖、抗肿瘤和促进伤口愈合等生物活性功能,甚至对抑制肥胖这种与饮食相关的慢性疾病也有较好的效果。Cudennec等[47]研究发现,虾头蛋白水解物的低分子量肽段(1~1.5 ku)对胆囊收缩(CCK)具有显著影响。研究表明,与饱腹感相关的生物标志物CKK是调节食欲的重要激素,虾头蛋白水解物活性肽能够刺激肠内分泌细胞释放CCK,因此,含有此类肽的功能性食品具有调节食欲的潜力[45]

      鱼类
      fish
      来源
      origin
      生物活性
      bioactivities
      肽序列
      peptide sequence
      南极磷虾 Euphausia superba 发酵产物 抗氧化活性 KLKFV
      日本对虾 Penaeus japonicus 残留肌肉 抗氧化活性 FKK,FIKK
      凡纳滨对虾 Litopenaeus vannamei 虾头
      虾壳
      虾头
      食欲抑制剂
      抗氧化活性
      抑制ACE


      茎柔鱼 Dosidicus gigas 皮肤 抗氧化活性 FDSGPAGVL,
      NGPLQAGQPGER
      丽文蛤 Meretrix lusoria 残留肌肉 抑制ACE VRK
      紫贻贝 Mytilus galloprovincialis 发酵产物 降血压、抗氧化活性 EVMAGNLYPG, HFGBPFH
      长牡蛎 Crassostrea gigas 残留肌肉 降血压、抗菌性、抑制ACE HIV-1蛋白酶抑制剂

      LLEYSI,
      VVYPWTQRF

      Table 2.  Biologically active peptides of protein hydrolysates of crustaceans and shellfish by-products[45]

      甲壳类副产物蛋白在其他方面也同样具有积极作用。Farag等[48]发现,虾壳副产物蛋白在碳钢表面具有化学吸附效应,能有效降低碳钢的腐蚀速率,并且这种效应具有剂量依赖性。Ismail等[49]利用电化学技术提取螃蟹副产物蛋白(CWP),在25 °C的条件下,发现CWP对H3PO4中碳钢的腐蚀速率表现出很高的抑制能力,并且抑制效率随着CWP含量的增加而增加,因此CWP有望成为一种混合型环保抑制剂。此外,Viswanathan等[50]通过比较分析发现,蟹类副产物蛋白与大豆蛋白或其他植物蛋白的营养价值相当,均可作为公牛生长的蛋白质补充剂。陶学明等[51]采用复合酶水解蟹腿、蟹壳等副产物制备蛋白水解液,再加工成海鲜调味料,工艺过程简单,调味料蟹香浓郁。

    • 水产品中贝类产量大,且种类繁多(包括蛤蜊、牡蛎、贻贝等)、分布广泛。贝类蛋白质含量为7%~23%(W/W),并且组成这些蛋白质的氨基酸序列具有结构多样性的特点,为制备多功能生物活性肽提供了丰富的底物材料[52-54]

      贝类副产物蛋白也表现出有效的ACE抑制活性(表2)。Fitzgerald等[55]从贝类副产物蛋白水解物中分离出一些抑制ACE的活性肽,这些肽能够抵抗胃肠道和血管系统的降解和修饰作用,从而以近乎完整的活性结构形式到达作用靶点,具有较高的生物功能。Sasaki等[56]发现,使用蛋白酶从珍珠贝壳蛋白水解产物中提取功能性肽,具有较高的ACE抑制活性,在0.25 µmg/mL肽浓度下,抑制率可以达到82.4%,所以纯化后的肽能够作为ACE的竞争性抑制剂,成为生产降血压功能食品的新原料。

      贝类副产物蛋白还可用于治疗各种疾病。艾滋病逆转录病毒HIV-1型是艾滋病的主要传播类型,HIV-1蛋白酶是组装新病毒的核心要素,抑制此酶可以从源头阻止病毒复制,所以,HIV蛋白酶抑制剂已经被广泛用作抗病毒药物控制HIV-1型病毒。Lee等[57]从牡蛎副产物热溶蛋白消化液中制备获得LLEYSI和LLEYSL 2种活性肽,它们均为HIV蛋白酶的竞争性抑制剂。此外,McFadden等[58]研究表明,贝类副产物血蓝蛋白具有多种免疫活性,包括与T细胞、单核细胞、巨噬细胞和多形核淋巴细胞相互作用,以改善宿主的免疫反应。并且,Riggs等[59]证实该蛋白在体外对乳腺癌、胰腺癌、前列腺癌和食道癌均具有抗增殖作用。

    3.   发展趋势
    • 水产品副产物蛋白回收技术方法的创新领域是未来重要的研究方向。现阶段,在食品工业中通常使用各种不同的方法从水产品副产物蛋白中分离和纯化生物活性肽,例如膜分离技术中的纳滤(NF)、超滤(UF)和电膜过滤,这些技术为获得特定分子量范围的蛋白活性多肽提供了支持。此外,膜分离技术与色谱技术相结合可以纯化特定的活性肽,具有较好的分离效果[60]。生物学方法是有效回收水产品副产物蛋白的方法,其成本和劳动强度更低、安全性更高。生物催化、生物转化和发酵方法的技术瓶颈包括酶的再利用和稳定性,以及难以维持连续反应等。因此,需要进行合理的酶设计、酶固定化、固态发酵和连续混合生物反应器系统的进一步研究,使生物催化剂反应具有较高的活性、稳定性和特异性[61]

      水产品副产物蛋白的高值化利用研究对自然环境和人类具有重要意义。利用大西洋鲑(Salmo salar)副产物蛋白水解物可以作为营养不良儿童的饮食补充剂,这种经济安全的利用方式为海洋渔业资源的综合开发提供了很好的借鉴[62]。此外,日本政府已经批准了一批采用鱼类副产物蛋白水解物作为特定人群健康营养素的功能性食品,其中,相当一部分特定食品专门适用于患有轻度高血压的人群[45]。近年来,研究者利用传统固态发酵技术,已经对多个副产物蛋白的功能性质进行了改良。例如,采用枯草芽孢杆菌(B. subtilis)通过固态发酵可以改善豆粕蛋白的营养质量,这些研究为应用固态发酵技术开发营养功能较高的甲壳类副产物蛋白提供了新策略[63]。迄今为止,仅有很少一部分生物活性肽具有开发成为商业产品的潜力,但是,越来越多的水产品副产物蛋白活性肽已经在临床阶段得到评估,其研究结果可应用于制药和营养保健行业[49]

      我国水产养殖产量很高,连续28年位居世界第一,但是当前对水产品副产物的高值化利用研究深度和产业化应用广度还有待进一步提升。此外,从产业发展角度,无论是水产品副产物开发技术的引进和发展,还是相关产品标准的制订和管理,都存在诸多现实问题和挑战,因此,要针对水产品产业的现状和发展趋势,进行下一步规划,为水产品加工工业引进新的活力[64]

    4.   结论
    • 当前在对水产品副产物蛋白的回收方法上,研究人员不断地创新,与更多高新技术结合,扩大了回收的范围和效率,让更多的副产物能够被利用起来。更有意义的是,这些水产品副产物蛋白在食品和药品方面的潜力被逐渐发掘,已经开发出许多不同类型的功能性食品和药物。我国坚持环境保护和可持续发展的理念,但是回收和利用水产品副产物蛋白在技术上仍有许多难题需要克服,相关产品的标准制订和管理都面临很多问题和挑战。未来,水产品副产物蛋白在商业上的发展将会为其提供更多的可能性和发展前景,越来越多利用水产品副产物蛋白制备的食品和药品将被批准和推广,为水产品加工业的进一步发展提供前进的动力。

Reference (64)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return