• ISSN 1000-0615
  • CN 31-1283/S
ZHANG Lifeng, TANG Dongdong, ZHENG Chuwen, DENG Dan, GUO Huizhi, ZHANG Shuhuan, ZHANG Wenbing, XU Qiaoqing, LI Ningqiu. Cloning and expression of ASDIGIRR and ASTRAF6 genes of Acipenser sinensis[J]. Journal of fisheries of china, 2021, 45(8): 1296-1306. DOI: 10.11964/jfc.20200812383
Citation: ZHANG Lifeng, TANG Dongdong, ZHENG Chuwen, DENG Dan, GUO Huizhi, ZHANG Shuhuan, ZHANG Wenbing, XU Qiaoqing, LI Ningqiu. Cloning and expression of ASDIGIRR and ASTRAF6 genes of Acipenser sinensis[J]. Journal of fisheries of china, 2021, 45(8): 1296-1306. DOI: 10.11964/jfc.20200812383

Cloning and expression of ASDIGIRR and ASTRAF6 genes of Acipenser sinensis

Funds: Open Project of The Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province (201906)
More Information
  • Corresponding author:

    XU Qiaoqing. E-mail: xuqiaoqing@yangtzeu.edu.cn

      LI Ningqiu. E-mail: liningq@126.com

  • Received Date: August 23, 2020
  • Revised Date: November 01, 2020
  • Available Online: April 07, 2021
  • Published Date: July 31, 2021
  • Acipenser sinensis is one of the ancient and rare fishes in China between teleost fish and cartilaginous fish, but it is vulnerable to different diseases in the process of artificial reproduction and culture, so it is necessary to deeply study the immune regulation of A. sinensis to provide theoretical basis for its prevention of diseases. A single Ig-IL-1R-related molecule (SIGIRR) and tumor necrosis factor receptor-associated factor 6 (TRAF6) are two important signal transduction elements in the signal transduction pathway of toll-like receptors. In this study, homologues of SIGIRR and TRAF6 of A. sinensis, named ASDIGIRR and ASTRAF6, were identified, and their expression levels in normal tissues and Poly (I:C) induced expression were investigated. Results show that ASDIGIRR and ASTRAF6 were expressed in 10 tissues of healthy sturgeon, and the highest expression was found in intestinal tract and head kidney, respectively. After incubating A. sinensis spleen cells with Poly(I:C), the expression of ASDIGIRR was significantly down-regulated at 3 h, and returned to the normal level at 6 h, then increased to the highest level at 24 h and then decreased, and at 48 h still higher than the control group. While the expression of ASTRAF6 reached the highest level at 6 h, and maintained till 24 h, then decreased to the lowest level at 48 h. The results show that ASDIGIRR and ASTRAF6 play an important role in the immune defense of A. sinensis against pathogen invasion.
  • [1]
    Anselmo A, Riva F, Gentile S, et al. Expression and function of IL-1R8 (TIR8/SIGIRR): a regulatory member of the IL-1 receptor family in platelets[J]. Cardiovascular Research, 2016, 111(4): 373-384. doi: 10.1093/cvr/cvw162
    [2]
    Garlanda C, Anders H J, Mantovani A. TIR8/SIGIRR: an IL-1R/TLR family member with regulatory functions in inflammation and T cell polarization[J]. Trends in Immunology, 2009, 30(9): 439-446. doi: 10.1016/j.it.2009.06.001
    [3]
    Molgora M, Bonavita E, Ponzetta A, et al. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity[J]. Nature, 2017, 551(7678): 110-114. doi: 10.1038/nature24293
    [4]
    Thomassen E, Renshaw B R, Sims J E. Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily[J]. Cytokine, 1999, 11(6): 389-399. doi: 10.1006/cyto.1998.0452
    [5]
    Li L, Wei J X, Li S, et al. The deubiquitinase USP13 stabilizes the anti-inflammatory receptor IL-1R8/Sigirr to suppress lung inflammation[J]. EBioMedicine, 2019, 45: 553-562. doi: 10.1016/j.ebiom.2019.06.011
    [6]
    Feng W, Gu Y F, Nie L, et al. Characterization of SIGIRR/IL-1R8 homolog from zebrafish provides new insights into its inhibitory role in hepatic inflammation[J]. The Journal of Immunology, 2016, 197(1): 151-167. doi: 10.4049/jimmunol.1502334
    [7]
    Gao J D, Jiang X Y, Wang J Y, et al. Phylogeny and expression modulation of interleukin 1 receptors in grass carp (Ctenopharyngodon idella)[J]. Developmental & Comparative Immunology, 2019, 99: 103401.
    [8]
    Zhou R X, Song W H, Liu X Z, et al. DIGIRR as a member of the toll/IL-1R family negative regulates NF-κB signaling pathway in miiuy croaker[J]. Fish & Shellfish Immunology, 2020, 100: 378-385.
    [9]
    Gu Y F, Fang Y, Jin Y, et al. Discovery of the DIGIRR gene from teleost fish: a novel Toll-IL-1 receptor family member serving as a negative regulator of IL-1 signaling[J]. The Journal of Immunology, 2011, 187(5): 2514-2530. doi: 10.4049/jimmunol.1003457
    [10]
    Garlanda C, Riva F, Bonavita E, et al. Decoys and regulatory "Receptors" of the IL-1/Toll-Like receptor superfamily[J]. Frontiers in Immunology, 2013, 4: 180.
    [11]
    Lu Y L, Li C H, Zhang P, et al. Two adaptor molecules of MyD88 and TRAF6 in Apostichopus japonicus Toll signaling cascade: molecular cloning and expression analysis[J]. Developmental & Comparative Immunology, 2013, 41(4): 498-504.
    [12]
    Wei J G, Zang S Q, Xu M, et al. TRAF6 is a critical factor in fish immune response to virus infection[J]. Fish & Shellfish Immunology, 2017, 60: 6-12.
    [13]
    Phelan P E, Mellon M T, Kim C H. Functional characterization of full-length TLR3, IRAK-4, and TRAF6 in zebrafish (Danio rerio)[J]. Molecular Immunology, 2005, 42(9): 1057-1071. doi: 10.1016/j.molimm.2004.11.005
    [14]
    Jiang S, Xiao J, Li J, et al. Characterization of the black carp TRAF6 signaling molecule in innate immune defense[J]. Fish & Shellfish Immunology, 2017, 67: 147-158.
    [15]
    Zhao F, Li Y W, Pan H J, et al. Grass carp (Ctenopharyngodon idella) TRAF6 and TAK1: molecular cloning and expression analysis after Ichthyophthirius multifiliis infection[J]. Fish & Shellfish Immunology, 2013, 34(6): 1514-1523.
    [16]
    罗江, 杜浩, 危起伟, 等. 濒危中华鲟人工群体的繁殖生物学[J]. 中国水产科学, 2020, 27(3): 269-276.

    Luo J, Du H, Wei Q W, et al. Reproductive biology of an artificial population of endangered Chinese sturgeon (Acipenser sinensis)[J]. Journal of Fishery Sciences of China, 2020, 27(3): 269-276(in Chinese).
    [17]
    田甜, 张德志, 杜合军. 中华鲟主要细菌性疾病及其临床诊断与防控[J]. 水产科学, 2018, 37(6): 800-805.

    Tian T, Zhang D Z, Du H J. Clinical diagnosis and treatment on main bacterial diseases in Chinese sturgeon Acipenser sinensis[J]. Fisheries Science, 2018, 37(6): 800-805(in Chinese).
    [18]
    田甜, 张建明, 张德志. 4种长江珍稀鱼类常见疾病快诊速查检索表的构建[J]. 水产科技情报, 2020, 47(1): 49-55.

    Tian T, Zhang J M, Zhang D Z. Construction of quick diagnosis and search table for common diseases of four rare fishes in the Yangtze River[J]. Fisheries Science and Technology Information, 2020, 47(1): 49-55(in Chinese).
    [19]
    江南, 范玉顶, 周勇, 等. 鲟病原性疾病研究现状概述[J]. 水生态学杂志, 2016, 37(2): 1-9.

    Jiang N, Fan Y D, Zhou Y, et al. Overview of sturgeon pathogenic disease research[J]. Journal of Hydroecology, 2016, 37(2): 1-9(in Chinese).
    [20]
    胡伟, 许巧情, 郭慧芝, 等. 达氏鲟自噬基因MAP1LC3B克隆及其组织表达分析[J]. 南方农业学报, 2020, 51(2): 445-452. doi: 10.3969/j.issn.2095-1191.2020.02.026

    Hu W, Xu Q Q, Guo H Z, et al. Cloning and expression of autophagy-related gene MAP1LC3B in Dabry’s sturgeon (Acipenser dabryanus)[J]. Journal of Southern Agriculture, 2020, 51(2): 445-452(in Chinese). doi: 10.3969/j.issn.2095-1191.2020.02.026
    [21]
    王济秀, 张锋, 王卫民, 等. 团头鲂tftfr1a基因启动子克隆及转录调控分析[J]. 水产学报, 2020, 44(4): 528-538.

    Wang J X, Zhang F, Wang W M, et al. Cloning and transcriptional regulation of tf and tfr1a promoters in Megalobrama amblycephala[J]. Journal of Fisheries of China, 2020, 44(4): 528-538(in Chinese).
    [22]
    Eggestøl H Ø, Lunde H S, Knutsen T M, et al. Interleukin-1 ligands and receptors in lumpfish (Cyclopterus lumpus L.): molecular characterization, phylogeny, gene expression, and transcriptome analyses[J]. Frontiers in Immunology, 2020, 11: 502. doi: 10.3389/fimmu.2020.00502
    [23]
    Jang J H, Kim H, Cho J H. Molecular cloning and functional characterization of TRAF6 and TAK1 in rainbow trout, Oncorhynchus mykiss[J]. Fish & Shellfish Immunology, 2019, 84: 927-936.
    [24]
    Cai S H, Huang Y C, Wang B, et al. Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in peroxinectin gene expression in Fenneropenaeus penicillatus[J]. Fish & Shellfish Immunology, 2017, 64: 193-201.
    [25]
    Stockhammer O W, Rauwerda H, Wittink F R, et al. Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos[J]. Molecular Immunology, 2010, 48(1-3): 179-190. doi: 10.1016/j.molimm.2010.08.011
    [26]
    Wei J G, Guo M L, Gao P, et al. Isolation and characterization of tumor necrosis factor receptor-associated factor 6 (TRAF6) from grouper, Epinephelus tauvina[J]. Fish & Shellfish Immunology, 2014, 39(1): 61-68.
    [27]
    Wang Z W, Huang Y, Li Y, et al. Biological characterization, expression, and functional analysis of tumor necrosis factor receptor-associated factor 6 in Nile tilapia (Oreochromis niloticus)[J]. Fish & Shellfish Immunology, 2018, 80: 497-504.
    [28]
    Zhang J, Zhu Y C, Chen Z, et al. Molecular cloning and expression analysis of MyD88 and TRAF6 in Qihe crucian carp Carassius auratus[J]. Fish & Shellfish Immunology, 2019, 87: 829-838.
    [29]
    Ordas A, Kanwal Z, Lindenberg V, et al. MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection[J]. BMC Genomics, 2013, 14: 696. doi: 10.1186/1471-2164-14-696

Catalog

    Article views (1698) PDF downloads (55) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return