-
胆碱,分子式为 (CH3)3N(CH2)2OH,化学名称为β-羟乙基-三甲基胺羟化物,是维持水产动物正常生长所必需的水溶性维生素。胆碱作为重要神经递质乙酰胆碱的前体和甲基供体,参与机体神经传递活动并促进体内转甲基代谢,对水产动物的生长代谢具有重要作用,具有维持组织正常结构和防止脂肪肝的重要生理功能[1]。由于鱼体内胆碱合成酶活性较低,自身合成的胆碱无法满足其快速生长的需求[2],因此,鱼类必需摄取外源性胆碱才能满足其正常的生长需要。饲料中缺乏胆碱会导致黄鳝 (Monopterus albus)[3]和高首鲟 (Acipenser transmontanus)[4]的生长受阻、消化机能和饲料利用率降低;引发斑点叉尾鮰 (Ictalurus punctatus)[5]和草鱼 (Ctenopharyngodon idella)[6]脂肪代谢障碍、诱发脂肪肝等症状。
研究表明,在拉萨裸裂尻鱼 (Schizopygopsis younghusbandi)[7]饲料中添加0.2%的氯化胆碱能显著提高其增重率,在中华鲟 (A. sinensis)[8]饲料中添加5 370 mg/kg氯化胆碱能显著降低其饲料系数并提高增重率。在点带石斑鱼 (Epinephelus coioides)[9]幼鱼阶段 (体质量为7.5 g) 添加1 562.82 mg/kg胆碱能显著提高其增重率,而在其生长至体质量为87.5 g时仅需要986.54 mg/kg胆碱就可使其增重率显著提升。可见,鱼类对饲料中胆碱的需求量存在一定的种间及生长阶段的特异性。
大口黑鲈 (Micropterus salmoides) 是典型的肉食性鱼类。自20世纪80年代从美国引进我国后已发展成为我国淡水养殖的主要品种之一,2019年我国大口黑鲈年产量已达到47.8万t[10]。随着大口黑鲈养殖业的快速发展,有关大口黑鲈对饲料中蛋白质[11]、脂肪[12]的营养需求和碳水化合物的耐受性[13]以及对饲料维生素A[14]、维生素C[15-16]、维生素D3[17]和维生素E[18-19]等需求已有报道,对饲料胆碱的营养需求却未有公开报道。
本研究以氯化胆碱为原料,探讨饲料中胆碱含量的变化对大口黑鲈幼鱼生长、饲料利用率、体成分及抗氧化能力的影响,为大口黑鲈幼鱼配合饲料的科学配制提供理论依据。
HTML
-
以鱼粉、玉米蛋白粉、豆粕、虾粉和血粉等为蛋白源,豆油和磷脂油为脂肪源,配制基础饲料。在基础饲料中分别添加0 (对照组)、700、1 400、2 100和2 800 mg/kg的氯化胆碱 (纯度50%,浙江欣欣天恩水产饲料股份有限公司),制成5组等氮等脂饲料,各组饲料中胆氮等脂饲料,各组饲料中胆碱实测含量分别为2 369.57、2 716.90、2 993.49、3 443.60和3 799.05 mg/kg饲料,实验饲料组成及营养水平见表1。
项目
items饲料中氯化胆碱添加量/(mg/kg)
dietary choline chloride supplementations0 (对照组) 700 1 400 2 100 2 800 原料/% ingredients1 鱼粉 fish meal 42 42 42 42 42 谷朊粉 wheat gluten meal 3 3 3 3 3 喷雾干燥血粉 spray dried blood powder 4 4 4 4 4 虾粉 shrimp meal 5 5 5 5 5 发酵豆粕 fermented soybean meal 9 9 9 9 9 玉米蛋白粉 corn gluten meal 11 11 11 11 11 鱿鱼膏 squid paste 2 2 2 2 2 啤酒酵母粉 beer yeast 2 2 2 2 2 α-淀粉 α-starch 8 8 8 8 8 豆油 soybean oil 4 4 4 4 4 大豆磷脂油 soybean lecithin 2.5 2.5 2.5 2.5 2.5 维生素混合物(除胆碱) V-mix2 1 1 1 1 1 矿物质混合物 M-mix3 1 1 1 1 1 三氧化二铬 Cr2O3 0.5 0.5 0.5 0.5 0.5 磷酸二氢钙 Ca(H2PO4)2 1 1 1 1 1 沸石粉 zeolite 4 3.93 3.86 3.79 3.72 氯化胆碱 choline chloride 0 0.07 0.14 0.21 0.28 合计 total 100 100 100 100 100 营养组成 proximate nutrient composition 胆碱/(mg/kg) choline 2 369.57 2 716.90 2 993.49 3 443.60 3 799.05 粗脂肪/% crude lipid 9.86±0.01 9.97±0.07 10.02±0.05 9.87±0.10 9.81±0.03 粗蛋白质/% crude protein 50.71±0.16 50.72±0.31 50.91±0.35 50.40±0.16 50.72±0.44 水分/% moisture 4.12±0.12 4.14±0.05 4.01±0.17 4.15±0.08 4.06±0.07 灰分/% ash 15.70±0.03 15.59±0.06 15.64±0.10 15.38±0.05 15.50±0.05 注:1. 饲料原料由浙江欣欣天恩水产饲料股份有限公司提供;其中鱼粉、谷朊粉、血粉、虾粉、发酵豆粕和玉米蛋白粉粗蛋白质含量分别为67.44%、76.56%、45.99%、61.72%、51.62%和63.01%;2. 维生素预混料购自于广州市联鲲生物科技有限公司,其为每千克饲料含有(mg/kg饲料)维生素A 10 000 IU,维生素B1 30,维生素B2 60,维生素C 800,盐酸吡多醇 20,维生素B12 0.1,生物素 2.5,维生素D3 2 000 IU,维生素E 160 IU,甲萘醌 40,叶酸 10,肌醇 100,烟酸 200,泛酸钙 100;3. 矿物质预混料为每千克饲料含有 (g/kg饲料) FeC6H5O7·5H2O 0.181,MgSO4·7H2O 1.09,KH2PO4 0.932,NaH2PO4·2H2O 0.432,AlCl3·6H2O 0.051,ZnCl2 0.08,CuSO4·5H2O 0.063,MnSO4·H2O 0.031,KI 0.028,CoCl2·6H2O 0.006,NaSeO3·3H2O 0.000 8
Notes:1. Ingredients were purchased fromZhejiang Xinxin Tianen Aquatic Feed Co., Ltd., and crude protein levels of fish meal, wheat gluten meal, spray dried blood powder, shrimp meal, fermented soybean meal and corn gluten meal was 67.44%, 76.56%, 45.99%, 61.72%, 51.62% and 63.01%, respectively. 2. V-mix were purchased from Guangzhou Haicheng Stall Food Co., Ltd., contains (mg/kg of diet): VA 10 000 IU, VB1 30, VB2 60, VC 800, pyridoxine HCl 20, VB12 0.1, biotin 2.5, VD3 2 000 IU, VE 160 IU, menadione 40, folic acid 10, inositol 100, niacin 200, calcium pantothenate 100; 3. mineral mix (g/kg diet) contains FeC6H5O7·5H2O 0.181, MgSO4·7H2O 1.09, KH2PO4 0.932, NaH2PO4·2H2O 0.432, AlCl3·6H2O 0.051, ZnCl2 0.08, CuSO4·5H2O 0.063, MnSO4·H2O 0.031, KI 0.028, CoCl2·6H2O 0.006, NaSeO3·3H2O 0.000 8 Table 1. Ingredients and proximate nutrient compositions of experimental diets (dry)
实验饲料的制作:将所有干粉原料粉碎后过80目筛,按配方比例混合均匀后,再加入油脂放入V型立式混合机中混合均匀,缓慢加入所配饲料质量20%~30%的水后再次混匀,使用膨化制粒机制成粒径3 mm、长度5 mm的颗粒饲料,待其烘干后,封口袋分装并储存于−20 °C冰箱中备用。
-
实验用鱼购得后在水泥池养殖驯化1个月,期间投喂大口黑鲈幼鱼商品饲料。驯化后的实验鱼经24 h饥饿处理后,挑选健康和体质量相近的个体进行称重与分组 (5个饲料处理组,每个处理组3个重复)。随机分配于15个网箱中 (1 m×1 m×1 m),每个网箱放养初始体质量为 (20.00±0.10) g的实验鱼20尾。实验期间采取表观饱食投喂,每天投喂2次 (08: 00和16: 00)。实验期间采取自然光照,水温 (27±3) °C,氨氮浓度不高于0.15 mg/L,pH为7.2±0.2,不间断充气,溶解氧在7.0 mg/L以上,养殖实验共持续56 d。
-
养殖实验结束,实验鱼经24 h饥饿后,统计每个网箱鱼的尾数及总重。每个网箱随机抽取10尾鱼,分别测量体质量和体长并记录数据,再进行鱼血采集和组织样品采集。使用1 mL注射器从尾静脉抽血,4 °C下静置4 h后离心 (4 000 r/min,10 min,4 °C),用移液枪取血清于−80 °C冰箱保存,用于血清生化及酶活性分析。抽血后剖取内脏团和肝脏并称重,用于计算脏体比和肝体比,肝脏于−80 °C保存以用于组分分析。另取侧线上方背部肌肉10 g于−80 °C冰箱保存,用于肌肉组分分析。各生长性能指标计算方法:
存活率 (survival rate,SR,%) =Nt/N0×100%
增重率 (weight gain rate,WGR,%) = (Wt−W0)/W0×100%
特定生长率 (specific growth rate,SGR,%/d)= (lnWt−lnW0)/t×100%
饲料系数 (feed conversion ratio,FCR)=Wf/(Wt−W0)
肝体比 (hepatosomatic index,HSI,%)=Wh/W×100%
脏体比 (viscerosomatic index,VSI,%)=Wv/W×100%
肥满度 (condition factor,CF,g/cm3)= W/L3×100
式中,Nt为实验鱼终末尾数,N0为初始尾数,Wt为终末体质量 (g),W0为初始体质量 (g),t为实验天数 (d),Wf为摄入饲料量 (g),Wh为鱼肝脏重 (g),Wv为鱼内脏重 (g),W为鱼体质量 (g),L为鱼体长 (cm)。
-
实验饲料、肌肉和肝脏的粗蛋白质含量采用凯氏定氮法测定 (GB/T 6432—2018);灰分采用550 °C马弗炉灼烧法检测 (GB/T 6438—2007),粗脂肪含量采用氯仿-甲醇法[20]测定;饲料和肌肉水分含量采用105 °C恒温干燥法测定 (GB/T 5009.3—2003);肝脏水分采用−46 °C真空冷冻干燥法 (TP-FD-1冷冻干燥机),冷冻干燥72 h至恒重。
饲料中胆碱含量测定:饲料中胆碱含量的测定参考雷氏盐分光光度法 (GB/T 5413.20—2013)[21]。称取适量样品 (约含5~50 mg胆碱),置于250 mL磨口锥形瓶中,加入 50 mL 氢氧化钡-甲醇-三氯甲烷提取液,为避免结块,边加边摇;然后将锥形瓶放置于 (74±2) °C恒温水浴回流4 h,取出冷却,样品过滤至100 mL容量瓶中,然后用甲醇定容至刻度;吸取5 mL提取液加到色谱柱 (弗罗里硅土填充) 中,使提取液依靠重力作用通过色谱柱;先后用5、10 mL甲醇洗涤色谱柱,待甲醇通过色谱柱后,加入20 mL乙酸甲酯,加入5 mL雷纳克铵盐饱和溶液 (现用现配),待雷纳克铵盐完全通过色谱柱后,用冰乙酸洗涤至流出液清亮为止。用丙酮洗脱粉红色的胆碱雷纳克铵盐,收集于10 mL的容量瓶中,用丙酮定容,在526 nm波长处测定其吸光度。按照上述操作步骤,用1 mg/mL胆碱标准液绘制标准曲线。
-
血清样品在4 °C下解冻后采用南京建成生物工程研究所试剂盒,按照试剂盒说明书测定丙二醛 (MDA)、溶菌酶 (LZM)、总胆固醇 (T-CHO) 含量、碱性磷酸酶 (AKP)、超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT) 活性、总抗氧化物能力 (T-AOC)、谷丙转氨酶 (ALT) 活性和谷草转氨酶 (AST) 活性。
-
实验结果用平均值±标准误 (mean±SE) 表示,数据采用SPSS22.0软件进行单因素方差分析 (One-Way ANOVA),并采用Duncan氏法进行多重比较检验,P<0.05表示差异显著。采用双折线回归分析法[22],计算大口黑鲈幼鱼对饲料中胆碱的最佳需求量。
1.1. 实验设计及饲料配制
1.2. 实验用鱼与养殖管理
1.3. 样品收集和分析
样品收集
饲料和鱼体组成常规营养成分测定
血清生化指标
1.4. 数据处理
-
采用雷氏盐分光光度法对饲料中胆碱含量进行测定,以胆碱酒石酸氢盐为胆碱标准品,以溶液中胆碱含量为横坐标,吸光值 (波长526 nm) 为纵坐标绘制标准曲线 (图1)。测定各组实验饲料的胆碱含量分别为2 369.57、2 716.90、2 993.49、3 443.60和3 799.05 mg/kg饲料。
-
随着饲料中氯化胆碱添加量的提高,实验鱼WGR和SGR呈先升后降趋势。在氯化胆碱添加量为2 100 mg/kg组,实验鱼WGR和SGR达到最大且显著高于对照组 (P<0.05);饲料中氯化胆碱的添加量也显著影响实验鱼的FCR,添加量在1 400 和2 100 mg/kg组的FCR显著低于对照组和700 mg/kg组 (P<0.05);饲料中氯化胆碱的添加量对实验鱼的SR、VSI和HSI无显著影响 (P>0.05) (表2)。
项目
items饲料中氯化胆碱添加量/(mg/kg)
dietary choline chloride supplementations0 (对照组) 700 1 400 2 100 2 800 存活率/% SR 91.67±7.64 95.00±5.00 98.33±2.89 95.00±5.00 95.00±5.00 初始体质量/g IBW 20±0.11 20±0.08 20±0.13 20±0. 07 20±0.14 终末体质量/g FBW 77.67±2.78c 84.63±1.63b 86.91±0.83ab 93.71±2.52a 85.39±2.44b 增重率/% WGR 288.33±13.88c 323.12±8.13b 334.54±4.15ab 368.54±12.62a 326.98±12.19b 特定生长率/% SGR 2.56±0.12c 2.72±0.06b 2.77±0.03ab 2.91±0.09a 2.74±0.09b 饲料系数/% FCR 0.86±0.09a 0.85±0.04a 0.75±0.04b 0.75±0.02b 0.83±0.04ab 脏体比/% VSI 8.24±0.10 8.02±0.26 8.02±0.18 7.95±0.13 7.97±0.18 肝体比/% HSI 3.09±0.11 3.00±0.18 2.71±0.10 2.98±0.07 3.09±0.15 肥满度/(g/cm3) CF 2.02±0.01 2.07±0.01 2.08±0.06 2.09±0.05 2.13±0.03 注:同一行数值上标不同字母表示差异显著 (P<0.05);下同
Notes: Values in the same row with different superscripts are significant different (P<0.05); the same belowTable 2. Effect of dietary choline suppermentations on growth performances of juvenile M. salmoides
-
大口黑鲈幼鱼肌肉脂肪含量随饲料中氯化胆碱添加量的提高呈先降后升趋势,氯化胆碱添加量为2 100 mg/kg组鱼体肌肉脂肪含量最低,且显著低于对照组和700 mg/kg饲料组 (P<0.05);饲料中添加氯化胆碱的各实验组鱼体肌肉粗蛋白质含量均显著高于对照组 (P<0.05);饲料中氯化胆碱添加量的变化对实验鱼肌肉中水分和灰分含量无显著影响 (P>0.05)(表3)。
项目
item饲料中氯化胆碱添加量/(mg/kg)
dietary choline chloride supplementations0 (对照组) 700 1400 2100 2800 肌肉 muscle 水分 moisture 77.38±0.28 76.20±0.16 77.78±0.82 76.86±0.26 77.77±0.11 灰分 ash 1.48±0.07 1.46±0.04 1.36±0.02 1.47±0.01 1.36±0.01 总脂肪 total lipid 2.43±0.33a 1.77±0.07b 1.45±0.04bc 1.04±0.52c 1.42±0.27bc 粗蛋白质 crude protein 18.71±0.61b 19.50±0.81a 19.42±0.30a 19.59±0.07a 19.43±0.02a 肝脏 liver 水分 moisture 72.54±0.22b 73.57±0.31ab 74.49±0.66a 74.87±0.26a 74.79±0.03a 灰分 ash 1.47±0.03 1.44±0.05 1.49±0.10 1.47±0.07 1.44±0.21 总脂肪 total lipid 2.52±0.04a 2.21±0.36ab 1.93±0.04ab 1.55±0.12b 1.67±0.26b 粗蛋白质 crude protein 10.21±0.11b 11.01±0.09ab 11.99±0.16ab 12.53±0.08a 12.77±0.12a Table 3. Effect of dietary choline supplementations on muscular and liver compositions of juvenile M. salmoides
% 鱼体肝脏水分和粗蛋白质含量随着饲料中氯化胆碱添加量的增加先上升后趋于平缓,其中水分含量在氯化胆碱添加量为1 400、2 100和2 800 mg/kg组显著高于对照组 (P<0.05),粗蛋白质含量在氯化胆碱添加量为2 100和2 800 mg/kg组显著高于对照组 (P<0.05),其余各组之间均无显著差异 (P>0.05);总脂肪含量随着饲料中氯化胆碱添加量的提高先降低后趋于平缓,在添加量为2 100 mg/kg组达到最低,且显著低于对照组和700 mg/kg组 (P<0.05);饲料中氯化胆碱添加量的变化对鱼体肝脏中灰分含量无显著影响 (P>0.05) (表3)。
-
随着饲料中氯化胆碱添加量的提高,实验鱼血清中MDA含量先降后趋于平缓,氯化胆碱添加量在1 400~2 800 mg/kg饲料时,各实验组MDA含量均显著低于对照组 (P<0.05),且在2 100 mg/kg饲料组含量最少。血清CAT活性随着饲料中氯化胆碱添加量的增加而上升,当饲料中氯化胆碱添加量提高到1 400 mg/kg及以上,实验鱼CAT活性显著上升 (P<0.05)。血清SOD活性和T-AOC随着饲料中氯化胆碱添加量的提高呈先升后趋于平缓的变化,各氯化胆碱添加组血清SOD活性和T-AOC均显著高于对照组 (P<0.05),且在添加量为2 100 mg/kg饲料组达到最大值 (表4)。鱼体T-CHO含量和LZM活性随饲料氯化胆碱添加量的增加呈先升后趋于平缓的变化,氯化胆碱添加量为2 100 mg/kg饲料组鱼体血清T-CHO含量和溶菌酶活性均最高,显著高于对照组和700 mg/kg饲料组 (P<0.05) (表4)。鱼体血清AKP和AST随着饲料中氯化胆碱添加量的升高出现先降后趋于平缓的变化,氯化胆碱添加量为1 400和2100 mg/kg饲料组鱼体血清AKP活性显著低于对照组和添加量700 mg/kg饲料组 (P<0.05);AST活性在添加量为2 100 mg/kg饲料组显著低于对照组 (P<0.05),其他各组之间无显著性差异 (P>0.05);ALT活性随着饲料中氯化胆碱添加量的升高无显著变化 (P>0.05) (表4)。
项目
items饲料中氯化胆碱添加量/(mg/kg)
dietary choline chloride supplementations0 (对照组) 700 1 400 2 100 2 800 丙二醛/(mmol/L) MDA 21.73±2.37a 17.92±1.13ab 15.36±1.18bc 12.28±0.23c 13.93±1.46bc 超氧化物歧化酶/(U/mL) SOD 59.71±1.41d 71.91±1.79c 82.61±1.90ab 84.07±0.85a 80.91±1.80b 过氧化氢酶/(U/mL) CAT 4.81±0.12b 5.05±0.09b 6.10±0.36a 6.25±0.18a 5.90±0.21a 总抗氧化能力/(U/mL) T-AOC 0.19±0.08c 0.21±0.10b 0.28±0.13a 0.29±0.13a 0.25±0.09ab 总胆固醇/(mmol/L) T-CHO 5.07±0.17b 5.86±0.14b 6.23±0.23ab 7.03±0.13a 6.95±0.48ab 溶菌酶/(μg/mL) LZM 5.70±0.24c 6.32±0.12bc 6.56±0.10ab 7.47±0.25a 6.79±0.21ab 碱性磷酸酶/(U/L) AKP 69.52±1.63a 62.53±3.14ab 52.08±1.72c 52.05±2.10c 58.87±2.07bc 谷丙转氨酶/(U/L) ALT 78.30±4.31 77.14±3.64 74.22±1.50 69.40±1.03 71.16±1.80 谷草转氨酶/(U/L) AST 169.65±24.06a 130.13±24.89ab 126.71±18.75ab 99.91±2.86b 106.72±12.60ab Table 4. Effects of dietary choline supplementations on serum biochemical indicators of juvenile M. salmoides
-
将大口黑鲈幼鱼特定生长率相对于饲料氯化胆碱添加量和饲料胆碱含量做回归分析,结果显示,大口黑鲈幼鱼生长所需的饲料氯化胆碱最佳添加量为2 112.50 mg/kg,饲料胆碱最佳含量为3 434.73 mg/kg (图2)。
Figure 2. Regression analysis of dietary choline chloride supplementation (a) and dietary choline content (b) with specific growth rate of juvenile M. salmoides
将大口黑鲈幼鱼肌肉总脂肪含量、肝脏总脂肪含量和血清T-CHO含量分别相对于饲料氯化胆碱添加量/胆碱含量做回归分析,结果显示,大口黑鲈幼鱼饲料中氯化胆碱添加量分别为2 008.50、2 138.41和2 144.67 mg/kg,即饲料中胆碱含量分别为3 443.71、3 464.19和3 432.09 mg/kg时,鱼体肌肉和肝脏脂肪含量最低,血清T-CHO含量最高。因此,从脂肪代谢角度看大口黑鲈幼鱼饲料中氯化胆碱的最佳添加量为 (2 097.19±74.87) mg/kg,最佳饲料胆碱需求量为 (3 446.66±16.25) mg/kg (mean±SD) (图3)。
Figure 3. Regression analysis of dietary choline chloride supplementations and dietary choline content with lipid metabolic parameters of juvenile M. salmoides
将大口黑鲈幼鱼血清MDA含量、LZM含量和AST活性分别相对于饲料中氯化胆碱添加量/胆碱含量做回归分析,发现大口黑鲈幼鱼饲料中氯化胆碱添加量为2 398.16 mg/kg (饲料胆碱含量为3 530.23 mg/kg) 时鱼体具有最佳抗氧化能力;氯化胆碱添加量为2 170.83 mg/kg (饲料胆碱含量为3 459.90 mg/kg) 时鱼体具有最优抗菌能力;氯化胆碱添加量为2 503.71 mg/kg (饲料胆碱含量为3 583.01 mg/kg) 时鱼体肝脏损伤最小 (图4)。
2.1. 饲料中胆碱实际含量的测定
2.2. 饲料中添加氯化胆碱对大口黑鲈幼鱼生长性能的影响
2.3. 饲料中添加氯化胆碱对大口黑鲈幼鱼肌肉和肝脏成分的影响
2.4. 饲料中添加氯化胆碱对大口黑鲈幼鱼血清生化组成及酶活性的影响
2.5. 回归分析
-
本实验中,投喂未添加氯化胆碱的对照组饲料的大口黑鲈幼鱼在56 d的养殖周期后表现出最小的特定生长率和最大的饲料系数,而添加氯化胆碱后其生长性能均有不同程度的提高,说明饲料中添加氯化胆碱可改善大口黑鲈的生长性能。研究表明在吉富罗非鱼 (GIFT Oreochromis niloticus)[23]、斑点叉尾鮰[24]和日本鳗鲡 (Anguilla japonica)[25]的饲料中添加适量胆碱也可以促进其生长,提高特定生长率,降低饲料系数,与本实验结果较为一致。胆碱促生长的主要机理是其作为甲基供体在鱼类肝脏胆碱脱氢酶作用下生成蛋氨酸和二甲基甘氨酸,释放出活性甲基,参与机体的合成代谢[26]。本实验中,随着饲料中氯化胆碱添加量的增加,大口黑鲈幼鱼的饲料系数显著下降,同时肌肉和肝脏中的蛋白质含量得到提高,说明补充胆碱提升了大口黑鲈幼鱼对饲料营养物质的利用效率、节约了对蛋氨酸用于甲基供体的消耗、提高了大口黑鲈幼鱼对饲料中蛋白质等营养物质的利用效率、增强了肌肉对蛋白质的蓄积能力,从而达到促进生长的效果。但随着饲料中氯化胆碱添加量的继续增大,大口黑鲈幼鱼增重率和特定生长率出现下降,在斑点叉尾鮰[19]、奥尼罗非鱼 (Oreochromis niloticus♂× O. aureus♀)[27]、异育银鲫 (Carassius auratus gibelio)[28]和锯齿倒刺鲃 (Spinibarbus denticulatus)[29]的研究中也有类似结果。推测由于饲料中过量胆碱加重了机体代谢负载,影响肝脏转运,造成机体脂类代谢紊乱,甚至影响到其他物质代谢能力,降低机体对饲料营养物质的利用[30]。已有研究证实饲料中胆碱过量会引起畜禽类副交感神经过度兴奋的中毒反应并影响畜禽的生产性能[31]。本实验中投喂胆碱含量过高的饲料引起大口黑鲈幼鱼生长性能降低的现象是否属于胆碱中毒症状还需作深入研究。
通过对饲料中胆碱含量与大口黑鲈幼鱼特定生长率的回归分析,大口黑鲈幼鱼最佳生长所需的饲料胆碱含量为3 434.73 mg/kg。同样以生长性能为指标,体质量314.7 g的草鱼[32] 最适饲料胆碱需求量为4 184 mg/kg,体质量0.12 g的虹鳟 (Oncorhynchus mykiss)[33]最适饲料胆碱水平为4 000 mg/kg,体质量0.56 g的奥尼罗非鱼[30] 最适饲料胆碱水平为3 000 mg/kg,体质量5.5 g的异育银鲫[28] 最适饲料胆碱水平为2 500 mg/kg,而体质量57.4 g的吉富罗非鱼[34]和体质量7.94 g建鲤 (Cyprinus carpio var. Jian)[35]的最适饲料胆碱水平分别为625.42和556 mg/kg;在海水鱼类中体质量1.22 g的大黄鱼 (Larimichthys crocea)[36]、体质量16.2 g日本花鲈 (Lateolabrax japonicus)[36]和体质量87.85 g斜带石斑鱼[37]的生长最适饲料胆碱水平分别为1 056.64、939.40和986.54 mg/kg。表明不同品种的鱼类对胆碱的需求量有很大不同,这些差异部分由养殖条件差异引起,但从已有的数据来看大部分淡水鱼类对饲料中胆碱的需求量大于海水鱼类,淡水鱼类中草食性和肉食性鱼类对饲料中胆碱的需求量大于杂食性鱼类。
-
饲料中添加氯化胆碱显著降低大口黑鲈幼鱼肌肉和肝脏中的脂肪含量,同时显著提高血清中T-CHO的含量。有研究报道,在黄鳝[38]和草鱼[32]饲料中添加适量的氯化胆碱能显著降低其肌肉脂肪含量,这与本实验结果一致。但在星斑川鲽 (Platichthys stellatus)[39]和吉富罗非鱼[34]中肌肉脂肪含量与饲料中胆碱含量呈正相关,而奥尼罗非鱼[30]肌肉脂肪含量却不受饲料中胆碱含量的影响。至今胆碱对鱼类肌肉脂肪含量影响的机理尚无一致的结论,对此还有待进一步研究。
斑点叉尾鮰[5]、突吻红点鲑 (Salvelinus namaycush)[40]和奥尼罗非鱼[28]随着饲料中胆碱含量的增加,肝脏脂肪含量显著降低;在王道尊等[6]和Hung[4]研究中发现随着饲料中胆碱含量的提升,实验鱼机体的肝脏脂肪含量降低,而血清中T-CHO含量显著增加。血清T-CHO是血脂的重要组成成分,其浓度可作为脂代谢的指标,脂蛋白是T-CHO的主要运输者[30],而脂蛋白的合成与磷脂酰胆碱的含量密切相关,磷脂酰胆碱在鱼体内合成量减少,进而使肝脏中脂蛋白合成量减少,转运到血清中的T-CHO的含量也会相应降低,影响肝脏中脂肪向血液中转运,导致肝脏中脂肪大量沉积[6]。胆碱对脂肪有亲合力,可促进脂肪以磷脂形式由肝脏通过血液输送出去或改善脂肪酸本身在肝脏中的利用,防止脂肪在肝脏里的异常积聚。说明胆碱可以通过直接或间接参加鱼类肝脏脂肪的转运促进肝脏脂肪代谢从而降低肝脏脂肪含量,从而减轻脂肪在肝脏过量沉积对肝脏的损伤。同时,本实验中大口黑鲈幼鱼血清中的转氨酶活性在饲料中添加氯化胆碱后出现不同程度的下降,也证实了摄取足量胆碱可降低大口黑鲈幼鱼肝脏损伤程度。从鱼体脂肪代谢的角度分析,大口黑鲈幼鱼对饲料中氯化胆碱的适宜添加量为 (2 097.19±74.87) mg/kg,饲料胆碱含量为 (3 446.66±16.25) mg/kg。
-
本实验中,摄食添加氯化胆碱饲料的大口黑鲈幼鱼血清中T-AOC得到不同程度的提升,MDA含量降低,SOD和CAT活性显著提高。在异育银鲫[41]和团头鲂 (Megalobrama amblycephala)[42]的研究中也发现了类似结果。MDA是脂质过氧化过程的终产物,其含量的变化是作为考察细胞受威胁程度的指标之一[43]。根据大口黑鲈血清中MDA含量与饲料中胆碱含量关系的回归分析,可以得出在一定的范围内,增加饲料中的氯化胆碱水平可以提高大口黑鲈的抗氧化能力。但是当饲料中胆碱含量超过3 530.23 mg/kg之后,大口黑鲈幼鱼血清中MDA含量出现上升的现象,这可能是过高水平的氯化胆碱会导致机体代谢负载过重,使抗氧化能力受到影响。
LZM是鱼类非特异性免疫系统中重要的组成部分[44],与机体免疫功能密切相关。本实验中,随着饲料中氯化胆碱添加量的增加,大口黑鲈幼鱼血清中LZM活性显著增加。有研究表明摄食高脂肪饲料的团头鲂血清中LZM活性随着饲料中胆碱含量的增加也显著增加[42]。说明饲料中添加适宜的氯化胆碱可以提高鱼体的抗菌能力。这一方面可归因于胆碱可以促进鱼类免疫器官的生长和发育[45],另一方面,胆碱作为乙酰胆碱合成的组分,对于调节鱼类免疫稳态具有重要作用[46]。对血清LZM活性与饲料胆碱含量的回归分析显示,大口黑鲈幼鱼最佳抗菌活性所需的饲料胆碱水平为3 459.90 mg/kg。
ALT和AST是存在于动物组织细胞中的重要转氨酶,主要参与机体内氨基的转运,富存于肝脏中,其在血清中的活性是反映肝细胞受损伤程度的主要参数之一[47]。当肝脏细胞受损或通透性增大时,大量的ALT、AST会释入血液,使血清中ALT、AST的活性升高。本实验中,大口黑鲈幼鱼血清中ALT活性和AST活性随着饲料中氯化胆碱添加量的增加呈现出下降的趋势。此结果与星斑川鲽[39]和中华绒螯蟹 (Eriocheir sinensis)[48]等的研究结论一致,由于适量的饲料胆碱促进了机体脂质代谢、降低了肝脏脂肪含量,而且抗氧化能力得到提升,从而能够减轻大口黑鲈幼鱼肝细胞受损程度。大口黑鲈幼鱼血清AST活性与饲料中胆碱含量的关系回归分析显示,大口黑鲈幼鱼对饲料中胆碱的需求量为3 583.01 mg/kg。
3.1. 饲料中添加氯化胆碱对大口黑鲈幼鱼生长性能的影响
3.2. 饲料中添加氯化胆碱对大口黑鲈幼鱼脂质代谢的影响
3.3. 饲料中添加氯化胆碱对大口黑鲈幼鱼血清生化组成的影响
-
饲料中添加适量的氯化胆碱可以提高大口黑鲈幼鱼的生长性能,降低肝脏中的脂肪含量、缓解脂肪肝的形成,提高机体的抗氧化能力及抗菌能力,减少肝细胞损伤。综合饲料中胆碱含量对大口黑鲈幼鱼生长及代谢的影响,大口黑鲈幼鱼饲料中氯化胆碱建议添加量为2 008.50~2 398.16 mg/kg (饲料胆碱含量为3 432.09~3 530.23 mg/kg)。