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ME: AV ERAKEEFEZFL RN EEL RIS HFK, HRAME, 5
EBRKATKEMET RN FHEAAAEATHIARHE K E, BHABEVHERT &
WAFHRE, CRAEBERHEVRBRETHREEROERZNRE R AXNMBH LK, F
Es EE AR (BFEOR. KA. BHEE. pHE). SRk, Mamy LR KR
R E T W SRR T 80K A e B R R, DU R HE— AR S IR R e
M ALE TR RARTE MWL TFERRS S Wb, AXTRY T 80 8A M8 8
R i, A Bt IR Rk R ) B B2 KA 1 T K H IR 7R B K AR BT T kB 4R

H BT B o
CHRIA: #; (KA E AL
FESHKS:S917.4

fifl, SRIRHARSIYIT (Mollusca) 5 & 4 (Gast-
ropoda) {ij &Y V. 44 (Prosobranchia) J5i 15 I & H
(Archaeogastropoda) ffd £} (Haliotidae) ] J& (Hali-
otis), HIRIEE L, HFRFE, LHAREHE
M FIZG M, 2021 4E, 43587 5N
217 831 1, HIRFD A TR e 28 5 K e h
HERH BT o BRI R R R, 1A kiR
(YWD A N o451 RS S i RV 8 i 2
FEFRFEN Y A R, T PR FRFE BR 1 7] Sy 2 it
BTN, S TR . BRI T K BT s AR
AR IRV, sl /b R 0 K AR A UL, B SR AR
e R AT AR A SR R PR Y
TR o T SRR TR BE it X SE 2R 22 SR
i e HET IR E a0 £, SR, JE4E

WS EHA: 2022-09-08  {EEIHER: 2022-11-15

HENTIE : RHEH E SR T E -6 5T MR (138 £ 15 45 F AL (2018 YFD0900304-5); b6 36 28 s R 101 H -45 &
B2 5 AR T B L b L 4 S 5 R B R %o v IR S R R B LD (2021 YFE0106100)

FE—1EE: Kk (B)T), NFAR=FREFEARP A SHE, E-mail: 154141002@qq.com

BEEE: KT, WA REFEA %090, E-mail: zhangziping@hotmail.com

JRABUITA © K= 224k) i (CC BY-NC-ND 4.0)
HPE K #2425 376 sponsored by China Society of Fisheries

ERFRERD: A

e, BEAG T FE 5 A B RN AR S5 UH R B A Y
BN R FEE A ALY R, bRl bR Y
BRI NGB A N Tk ol A5 5Ts
IKIHEA, ARk, A5 5 57 A K 380 O AR
AW 2, KRGS IR H B, DA A
FrHE BB IE T IR A kA, A RT3
FLR IR 60%, 45 SR AR R T E I & T
e, 202 A A fa R T Hpsk kSRt
IR, REZBED T E T4 (0y) KL
R EA R IC . AR b i EZAE RS
B AE R = A = BRI T (adenosine triphosphate,
ATP) WA LB R ALt B i e L3244, FEuLad
i, A A AR e A A A 324
ATPY, AN, AN O, 1Y 10%~15% #F £
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FAREI RN, AnE/RUM ARG . A LB R A
il T A £ 1) S T T AN BT RA, YA B Tk
T 200 1) SR A e R 1 A e B S N IN , AH  E k
TAREIE RS . EREME T, WA
TARBEWSE AL, BT AR 20 T A T A
IR 24> ATP MA LR, Br MK Hhn
AU BERBCR BEAR o2 xt i A iz
A . ARsE . RE AT RS RE, A
WP . A AR B AL B A AR R
MU, O, AR AR (DO) S IR A KA H IR SR
A A A T B AT I — A O . A
KA BN 25 °C B, KA A AR RN i 5
7.5 mg/L", JRETHE IS, KHH DO 2. —
RN, K B4 22 (I FRFE KA e 1Y) DO TETERAR,
M DO X 25 R FRFH sh Yy i AR 0, 52
e H A RN 71 %, I R R IR B
YIRIBET. . 1K DO MR AR 2 i, G
W AR RARGRAR K e R IR AR 23 5 R AR
DO, HL.7E 20 22 60 FFACHA N LB, DO ik
F 2 mg/L AR (Oncorhynchus kisutch) 4= i 5t
T2, TREDN DOMKT 2 mg/L AR AILA
(hypoxia)'s {H Hy T A [ A5 4 0 A= 3 T MEANTA]
XF DO W K BATE, K LI — DO R4t —&
X AEIIRA A GEMN . In A S s
(COL) RIGML T I & A i, FEFhsh ) i 4 S i

B F HIRBE 0 & AN e dE R R e ™ e
i F COL 1) DO & XA iZFh sh 9 A S i 4 38 T
RETE A, T A 6 AR A BR8]
BRI TR B, R I H I R e A Y,
WEGIEH (H. midae) FERFRACH 6.4 mg/LGER T 2
mg/L) BFat B30 TR EUE B, AR raE &
S AR T E R

AR E W X g A K NG L AR
et bs (G 0% . . BEYTEE . pH ). &
REVLAE . Wlpaes n 1o 5 PR B 3R 3k ] 4 45 7 1T 1 52
M) 2553 1 A1 4 Pl 26 g g AV o) 1) AF 9 0 R, A
WA M TR L T B R R, DA S i — 25
5 060 P AU BTN i 7 AL | R S U 42U
R . 0B i R B 2 A AR 3 T 15 K 1 KR
T BE M R A SRS % |

1 AREEU e X A R AR AL SR AR 1 52

L1 REMBXEEK, FENRM

VR ds e, sz A AU 30 A R I 25
IR AAU O A 2 e B ) A= R AN 52, b2l
HHUR T TG R AR, o E A 3 Rk 2 5[ R i
MREIET . BUREHR i 8 i AR SAUE T Y
SR BIF TS R A T3 1.

*1 REME TR

Tab.1 The response of abalone under hypoxia stress

TR kol i3 EN SN SR
DO stress response in abalone references
6.4 mg/L Fe K41 ecmMF RS0 (H. midae) AR, AR [13]
4.2 mg/L SRJEI (H. laevigata) ) 5E K AN BE I 3 R A7 15 3450 2 25 PR AR [14]
25mg/L, 120h FK5.1 emfRILFLEf(H. diversicolor supertexta) B HIRAET:, {HHAUH /1 B3 AR [15]
2.11mgL, 48h Fe 3.4 emf¥JLALER A AET: [18]
3.08mg/L, 72h FeK3.4 e JLFLEE (H. diversicolor supertexta) 4T AET [18]

A, AflERE, EFRERERE T, S
£ (H. discus hannai) 1 96 h AL R (96
hour-median lethal concentration of dissolved oxygen,
96 h-LCsy) N 4.82 mg/L, T4k #L6 [H. discus han-
nai(Q) x H. fulgens(3)] 1 96 h-LCs, 4 3.18 mg/L,
] L2 A58 00 A [ R A RSB0 T B A7 R L AL
BB, RIL T AR L3, S S0 R bf i
4 (Fe < 2.2 cm) M1 IEE (52 5.9 cm) L]
W38 BRI ) DO 435100 2.5 Fil 2.0 mg/Ls HBR

https://www.china-fishery.cn

FET- P DO 43514 2.0 il 1.5 mg/L; FFif
Hh R A6 T A B T) G 0 SR S B O IR Y AR
12~16 F155 6 /NI P, mEAE B4 1 T 4.1 cm)
XIS 8 (Y i 32 B8 T H L (G2 K 6.5 em) 58P,
IRARGE I, A TR S 8 IR SR P T A2
AE IR, B (R Fh AR KA AN ] e L, XS
RSB T 32 B8 AN TR o 3t s B BH S 7 3
S FFET H 8 I ) DO T, 20 X6 8 2
TE I S 5 R AR, EURR T A R R BE T
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IFIRNTT &, 4l SRR AU 8 AT 32 RE 7 L B
fity AR S 3 TR 32 BE T BR T 45 DO IR L
(1t R RIRUAR A7 5CA1, 355 a8 R 18] )
PR B YRS AE R YU EE . R L TR
FROH B R AR A A G . e R A DA T,
RE RS OIS DG, AR T R M Y )
(14 7 & AR 00 ) L R 2 Y =5 52 i f ) T 1 Sy
ERES RSB, BIR) LCso i, HHEA
30 B RE T B2 0, TR B R, R AR X L Y
BOOCRLN G , BRI DA Y 52 BE s
FRATAE IR FE I DX 0 ) £ T A B, R B R My
g X DO HY T REE AR MR, SASET- BB P 2
X 5 LA A i T A s AL DO BT R
R A SE T RIEAR— L

1.2 REMB X8O R AR

i S AR A2 i MILAAR O X AP IR AR A ) —
T AR PR bR . EIREMNE T, B DO RYREAR,
i )00 0 2 SR T S BRI AR f kB, R4t
] 5% 0 2R 45 T S PR S A B A T I
SRR A s, RIS AR JE 5 i 35 S AU i (Arrhe-
nius break-point of dissolved oxygen, ABDO), H:
AT AR Ay A A I S 368 Tt A2 fig T ) — A B 4
BRI, 1Y) ABDO MK, 3% W H i A2 A% 42U Bk 1)
RE TR . [z, U A2 A% A W38 i fiE 0 )k
551 B ABDO I SIREE . MRS RA
Ko B ABDO P i B2 i i e B, AR FR
KA EEE) ABDO AJF . WA R B E (20, 25 I
28°C) T, 4HLUFLHA) ABDO ¥ L4k, %
RS S =41 IRRUNTR FRINE SN ELE FA VYR O (o= Wiz STER: )
AE 7 b s AR Ml Ak, A MRS R,
Ze AL [2 A = JuA AL H A K8 (H. gigantea) M
i) 5 4 SU M H. discus hannaiQ@ x 5481 H. fulgensd
AR AT () =TT AR 3C i, WAL H. discus han-
naiQ@ x LRl H. fulgensd %= 3¢ Wi 5 H A Kl (H.
gigantea) MESL ) = JC A2 22 B ) 7F fit IR W aE . Tt
e . AR R T AR AR
1.3 RS HE 304X 5 59520

MARE AR, #IBR T AT R O R AR
A1, i A] e e R R R T L e A
YR b iy i e ST VA (RN SN EZ S

90 SER S A E b ) - 1
FHEM S S B AR R RS . 28 &
I K 0 A AR B A RT3 A e R P i A AR R

R E K7 2: 2 E /) sponsored by China Society of Fisheries

S R 3 AR A 3B B AL o npR R I R B A B
ZWA R —SF . HIRE A R
BRI, AN )2 S R I R 45 AR 8 1Y 4R
DR ERER=giUF 5 N EIECE (=07 SIER 32 S s
#, HUACA BRI L PR ke i A B R oK BT,
LA s A TR LR, RS AR (R
A st AR I Y R A A S AR A e, A
I AU 30 1o 3 W Y T 2 e Tk 2 S B sh B it s
Too B TP A £ 258 AR O,, 774 CO, F
REsE, FTDAFER R MRS ) R bR, it
5 FE AT T i sh ) g RE AR IS Bl . AR
WE BRI, SRR R ST, BB
MRS P, B o S S PRI I 25 AR A R
RNV SR RE R R oK, (HBEE IR EUa
g, HABE RS KIEREAR, LA 32
aok B ATR G A 30 R A T S A 45 i A SR i Ah
RIS . RIZEAREAIA T, s pFea =
ST m R AR AR A . ZhW el o 1 4
Stk Rr e AR, B 8 o R e R
I R TH A,
A AR R R A R IR R E
(MEK/N). DO %, AHFFERY], FERIFERIE
a R, AEIR AR FE R AN, HEATH
FEARTE — E 103 Y0 ] oA 25 i O R 79 T s i T
0 A SR R AEIE T, S B AR
AR W ER TR AR FE AR PSR S
B 7E 28 °C #Y 2 PR E M T R FE SR LB
1E 25 °C T 1y & 2%, & B [H rubra(?) x H.
laevigata(3)] TEARSEHE T 19 i KFEE R R T
PR A 5, 2% B HOGHIR S0 38 1) 365 17 g L
HOEAR SR, WA MR, FM3E . AR
& B B0 L [ AR AR AR E T B R WA R, #E
SRR B A A A R B R 3G g AR . e
4.1 cm R AE SRR A A T IAESR R B E & T
Fo KN 6.5 cm MR ARG FE FRY, MITEFESA R
5 DO XRARMBIET T, AiESR L, ZKFH2)
] (F¢ K 4.4 cm) IIFEAABE DO 1Y FEAR TR AR,
X5 DO e i 1) F8 S 388 i 4 T P B AR —
B, HJEA AT RE S S R o 7E AR AU 38 T Sd i PR A
HORE AEORR JER HAF I7 1Y B (] G ELE A i
PR EIE T, FEEUR YRR S 5 | R B o B~
K, G | i 0 40 00 L %) D S0 0 285 A A L 2
FAI AR AR B 1T 35k g 3 2 (1) 2l A2 ] e 2 R EUR
SAEERH Y B, AT E R A FE T, A
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AkiESE 1, FEAEMAFE R R Z L B B B
3%, WAZ DO MW, e K ukE a4
H) BAREE T, REAELZH] (e 4.1 cm) AYFE
SRR (G2 6.5 cm) B, {E g 3E 6 19 2 B
IR B 7 K R A IG 403 AR SR BB IR T B AT 1Y
FEACR, R R AT e AR S iy R B R 8 T Z)
ol ARS8 2 X B RS i, (R4 i A
JEHAE P, R K B BRI B 4 1 e
T AE S (7 d) AR EE T, KA AR e A fif
(PR 80 ) TEMMIA J5 IS 1 K2 B0 H B AL (1 36 3%k
NG, 5 2~4 RN PE AR, B/ HAE AR
B BN IE F K-, T A AR 1 S5 rh O
pUEE Il 2k e

. RE . ARSI FEHM, H
AR IR o FE AT IR P 2 B HE i B A
Heg %, A AT o D12 A B0 3l AR B AR Y
HIESH, HEEARU T AR 1 B 1 A5 R
HRARGL 38 TR LA DS I8 % BT A R A 5 i
WITEIEH % DO WYL T, rE AR 8100 4h if) (58 K
4.1 cm) 5 (Fe i 6.5 em) MIHEERAMML,, (H7E
MRE A BTG BL T, SR o 6 178 HE 2 % ) S 3
AN, eI Ea T A HEECR T =,
H R AT BE R TEAR A A T, 2% i 7= Rk
AL, AR R TR, JFm%
Bl CO, FNH,, M3 B4 i HE =% T
FR T A 1 R B AR AL ) AR BE
A5 ARG S0l 36 AR F PR 2 5 SR T AR
AU AR 2 B P IR R IS 1 SRR L (O/N) {7 B
W REARAF BIEDUE : 7EIEH BT, FEIEHIL) R
) O/N {Hh 179.22, Rl 114.8, TZE(RE MG
AEBL T, EEARERLIEAY O/N B K 18.75, it
I 138,179, F34b, AR AU 6 X fifd 11 28 Sk i
PR A, xR K Ak A 0 R AR
S T A R X 4 /N i Y L EDE Tk — a5 )
BERT DL, AR BOR (R E s 5E K R), HAE
SR . HURHE, T AR AR A A T Y
R R R RHEE R B, R XA
Jolh 36 At A R o 3 Ay e I B 1 00 B R e 3.
T8 ML T BEA AT AS R TR, Fhs .
FURS B AR ) A 86 AN R 9 DO R I HEECR AT .
T4 03 0 4y 860 1) HE =0 R AE DO Ry 2.5 mg/L BYfIK
AMHE RS 1. 2. 3. 4TI E AR
M7E DO K 4 F1 8 mg/L RS HL T, WK H B0 4 3%
Ak, AIOL, B HE SR = BEAOE T DO 1Y 1

https://www.china-fishery.cn

() Fsf 4 B 7T fi 2 BH T S8 0 2 B 4 6 1) A S SR AE AR
S0 T S A, DA T A E R S A 1 5 ek
BB B, HEE R T 5 DO W IR A,
W5 KEFBBAEA G,

1K E 18 2t g 58 = R 89 %A fiE I 42
IS EZES ), METE. RyFEYE
B R A BB S A A R N A A TG B R
THAE ATP (W R EFE . FEIEE MIEOLT , PLAH
it DL O, Sy e i 32 AR A A R R B 2R A i
ST AT RE, H 2 ) ) K B)
RN TR DR (32017 31 IR 7 S = A 21 B 52 ! R S
FOH R UL A BT, LA 2 R B A A iy 5
JE B AR A R i B B 3E AR R B, ANl
A SR AR A 1) MR HE LA LR Sy e 4 L - 32 AR IR T
ARy AR b e i, ARt B, A LR
B JF A B BR (methanoic acid), R (acetic acid) .
FL R (lactate). 3E ¥ FR (succinic acid). & ff §if
(octopine) &5, JFRELRER LIS L ATP (K 1),

AiESs L, JOEHESI YRR EUME 1 Y
fIE T 32 B B IR D 43 A R TG AR I AR B T AR
HEC 38 E A B g0 IR IR A B IR RS A R
(phosphate arginine, PA)™ FI# 2 JJLAZ (phosphate
creatine, PC)™ &% H 33 Ff i o Wl 12 It 4 it o 4R
1S fe & A FE TR L B () 2 T Y . Bl DO 1Y)
HE— BB, SORLARIEM R A8 57, ATP 1Y) &
Bl 2z ek /b, T A AR AR G DA B fE £ A
SAALIE JiL (NADH: NAD") B 2R o 78 K i ] i 45
AR ], KER I ATP A& i BB A2 TR )
T B2 H il R 34 6 (phosphoglycerate kinase, PGK)
IV R AR 1 (pyruvate kinase, PK) LAY [
PRI, HIX WA ZRUAE 200 B IO AR I P B R A
72 (nicotinamide adenine dinucleotide, NAD") {4 3
E—ENAKEATRER A, B FE BB ik A2
7 2 NAD'VE o 808 A AR HfR 3k, AT
e IR ek R DA Rl R A T R VA T I A0 A b — W TR
I ¥ (adenosine diphosphate, ADP) H#ifzfk, &
W ATP, FEAREMNE T, 2878 Sk FLBR 1) 7 78 b -
FLBR 4% (glucose-lactate pathway), 2= NN &
B (alanopine) . N-F2H J&-L-TN &R (strombine)
AT B (tauropine) BY F £ B 114 i 20 1 - ek a4
1% (glucose-opine pathway), F1Z¢ =453 51| b 5% ¥
FiR M R £h (propionate), PN & MR (alanine). JF 31
T RPN TR 6 1Y) 7 A /R A IR - BR AR IR 42 (gluce-
ose/aspartate-succinate pathway) iX 3 4~ 5. £ i) b i

HPE K FE2:2: 3290 sponsored by China Society of Fisheries
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iS5 TAVENA T NAD AR E S, fn
TE R AN B s e b, EE LI (pyruvic
acid)+[ #5 & R (arginine). H &R (glycine). NA
2 . iR (taurine) &5 H.rp ) —FF ]+NADH+H W
JEWY), TEAHN IS EE (dehydrogenase, DH) Fyfifk
T, ol (FEA . N E-L-NER. N
FUEL L AR ED)ANAD H,0. 1 TG EAR Y
AR, S KER NI I L 7R
M (coenzyme) WL R, DA S0 1 W 1 i 110 20k
ZEHEATE R R, AHIETR T, ThRETERIREE
P AR AW 38 34 25 5 350 A B 1Y) 7 BEAS 2 AR
JAF, PR MR AR RE B AN 2 D FR A ) T R A
MR RAME, RIBERR K 2 R +Mg” -ADP+H 7E K
Z R4 (arginine kinase, AK) FIMELL T A= it &
FR+Mg”-ATP, MR A 2 1 RE 5 iF AT 4ME . X
Tl B 99 5 g 7 A 1) B S I JS 43 G S8 W I e ™ 2B 1
REm TN T s FEMLISFR b, WA B e L AN
MRS, KI5 PR b VR itk — 20 77 2k ATP (1)
Y FLIR R SO R, [RIEE 4 NAD', DLgb
FEE W0 1 NAD' . R JS, M AEE R Y
S N-FIEE T O . A B S s 4
i 55 g Y SRR Bl 0 v R A T T A I 8 7 1 1)

KPRl P AR SR A LR . B FATR RS =R 2 5 1
AR T e T I e

MR H R e (adenylate energy charge, AEC)
J& ATP ¥ Bl 1/2 ADP ¥ Ji 22 Fil 5 5 R ik
JERIHLAE, Bl AEC=(ATP+0.5x[ADP])/(ATP+ADP+
AMP), FAEYTERHORE T AR A B 8 FRE7
B AEC{H N 0.8~0.9 i, FRHAFIEH
AR S 3R 7R IZ A W AR A TR a4k
A5 UAYR AECEHART 0.5 B, Ko HAA T4
P AR It B 20 B PR T RS R R T A b
R K 2 TR 5 B 2 R 1T (ADP) JE B — 5% IR AR 11
(ATP) Z[A A A] 3 A2 46, HTh M 0y el 28 25 i A= 9
1) AEC {H & 4781k A AL TER b 1 ki e —— 11
S KW (pentachlorophenol, PCP) Fl4iffii {4 & C &
A Tl 417 1] 557 Z AL (sodium azide, NaNj),
FAAAR IS 50 A) A B A0 B A 1 7 AR AR
iH . Shofer 55 ™ PF fifi T £ AL W 38 T A1 PCP,
NaN; 2 5% L6 (H. rufescens) H RS 2 R B 1)
T, K3 ATP I B IE [a) S 5 ] 9 £ — B ik
R B (pseudo-first order rate constants, Kg,) A1
S ATP % BE RIREAR S ARG o K, FIBERR KT 2
R e BEWS ST — S SR [F R, X P R R

R E K7 2: 2 E /) sponsored by China Society of Fisheries

A FT PCP, NaN; #2883 3 Fblhii 7 i 21 62k
KA ATP (G 577 B AT [ RE 38021 . Ak,
Shofer 551 L# T 7EAR UM N A PCP. NaN; 2
% T3 o = RO A 4 1% (high performance liquid
chromatography, HPLC) Il x& 1Y) AEC {5 Fl fs H K5
S TR WA - i B2 0 A1 Y 'P-NMR (nuclear mag-
netic resonance, NMR) Il % A9 7 B3 — i 2 R /Y
We B, BT A 3 ) A1 AU aE T A S W A] &1
i) AEC {H -5 % BRAL A BEACAR [R], 150 I 6 1 A 41
SAUME X218 ATP AR 52 AN I, AR, JF
5 ADP (130 R B 24 Sy axt v s80R0RE £ 1 e
B =502 —, A 8 R I B3 2 A% . i
RN O eR: U L NE (A=W 0 SER NCIB TR =N 78 L 5e
T ATP W R A 2 R A 1) 3% A AP 4L i3 10
B, HARE KRG RS 1 /N ik B IEfy
2 B ARG S0 30 300 1) R 52 W e B B, T
T BEERORS R R K A 77 A ATP IO R 3 ™, w]
W, FEAREAE A W A AR S PRI B B,
ST K ATP SRR RE R . XM EPIE T BERR G
AR AT AR Ay it %) RIS} RE B BRSO ) R R ), (B
3 o 3R 7 SRS ) 4R R kb S T R 1Y) B[]
B,

AHiESEH, EME AT REET 6 h N,
21 (H. lamellosa) W) P72 LA E WL BE 2 £ 2
P A R W TRk OB it 5 TR A R 1) 3 ) 3 e ok
PRAL, AR TR SR D-ZLER W 43 51 A e LRI A2 L
T JC R R AR e B, XA
X PR 2 AL PR A e LA R R o7 Tl ——— 2 T B 5 I3
fiff (tauropine dehydrogenase, TDH) il D-F Il &
fit (D-lactate dehydrogenase, D-LDH) i - & %
JE—B . AR AP OK TR, AT AR AR
Jofp-3E B[] b 00 ) R o g AR A8 Ak, (L 4[] HE
AR S MEL RN, SRR LR (PR Rl Rz
il B 27 ) (1) S0 B 3 BT A5 R I RS [R] 920 g
Hb, EORIE Ak AP B o S T A A 1) s R 3
SRR T i RN A1 57 S AR ST P Se iz 3l i 3
S pe ks, (HHIFE R LAY 32 ae U
WM WAHGETR N, EDREMERREMEE T,
FE ARG A R A R S R e i LA — e 1Y
fe g Py, X T] g H A 2 [R) A ELAE AT g
i B fE B W R A O™ WA A, I
i 38 2 T B0 A 0 DU PR AR A A, T T
FIF B e it % % 2 IS S X ML A A7 2 0 2 AR
whis s i R BRI A B, AR R
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RS A DR ) A P AT i i e DR B R A, ]
RV 14 7 R B 25 14 BE R (2 R R A
JEEY S R L, IO 20 42U RE R4
PRSI, JCRRE AU A U SR A DA
A RES AN R L A BRI SR AR G LAt
WFo A B, Bl R B N TS ARDR 2 s 4 Y 26
R TIRE, (o> el 2 R ™ R RE e, T 7 A
e, R ) R G B AR AR L AR T g
A, — B &, WAL, SR A
A RE & T T4 1 BT ORISR B AR 1, T
R B B0 T XA i B wdm ], (2 —gep
PRAEAR ] AR S 30 B0 2% P 20l B sl 1) ]
il 8 (1) 2 SRR B M EE AT, LRI AR 2 A 4
WORIEAHIF ST A TR R

AN AR B 40 i 1) B 2 By, TR
SESUR N ZL R R, DAL SR it RE
o OB S RO T RRHUR R E TR,
AT LSz e H S 7 ol 3 B ) A BORAS o AR A
BN, RS B i B AR, AR 2R
RAR, A RE ALl ATP ST N ML RE . A
B S, RS0 S5 AT 5 T S 258 00 e
BRI B A R, PR A R
SENE BT A 10 /NI I B IR, 7652 4 Ak B EA T
55 20 /NI B, BLITRRIEAT AR SR AR A S
PRI IYIIE] 2 2 e (IR R IR ERSEIME T,
fof 1) g 1A QA Pl ORI S Sy ) A 1) A 3 P o
u A SR O R A R 1L, SRR S e il
B P T R AU R R AR (B HRIE AR
FEAR S AL S0 (i S0 120% RO TR A
AbTF AR ARAS) T, A I b L o s 2 0
JE LA EE RIS R R R OR R A R Y
AR K A 22 S 4 B D AT R SR A [R] R
BEL i o 4 S 1 AR SR RE D AN [R) s R, A
AR S SR TR A FA G, AT E
BIFTE I LS

Besh, — Rk, RS FEHEET S
ol 11 S T R RERE LRI AL, R T RIS
JIREAR, WA RS 155 B0 5 B AR EL A ™ A= G i
ARZ IR o (EL H AT S AR S 38 Xt 0 520 ) ) 45 7
AR BEFEAR D, HLBUA A FE L0 B BIF 5T 20
e AR Sl 30 36T 05 52 A B 2 -5 5 S A A A
X AT BE 5 6 B AR SRR O, T BB A5 K
pH X 8 5208 12 -5 77 4 52 ) L ARG AU 38 %o A2
IR 5 A B M R IR BEEE R A A
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FRRE A0 AR A0 P o 2B 3 B 2 S, AR
18N B A B e B AL R E A1 2 i
S1= L P N s AT S U SBA  g SE A I T

K B 38 AT 80, B By 69 7 R I % &
(hemocyanin, Hc) #2 1 Ifil Jhk B o ] 75 4 25 (1 ()
By, BR T HA FLLET 8 1 2Dl s i 4
SMTIRes, WHA R BaE R S AR
HY)RE. AGESS H, AREMNEE T B IR CHER
TaRmEL RGN AL, oI &
(YR AN Y AT A Sy 0 £ A i s 14 () o 44
BHizHE MfE )1, Caldero'n-Lie vanos 251 5%
B, S 1 W S AR BEAE AR AR A T T
fo,  TAE fe IR 2 R e YRGS S T T )
MR . PRI IS, AR AU AE T B Y 1 7 2R 1
VR FE AR T — 20 T, TR G 38 T B0 A 1 i
HE A VR BE AR AR 2 — DRIk . fE iR e T,
2ot 110 B 1 AR B P AR T g L R T e Y
PRI B %) 38 0 e =2 1 R R X 7 g 4 R
WA G, AREYR, RIFERACEHS 2 3G e
e R B T DA T 2 ) AR S 2l T e ) P
Wi, IR S A 4 2 (the most abund-
ant respiratory pigment) [ ¥ 5 DL i /& AL 44 %) P e
HERERY T oK o XA AMEDL RT3 8 3 Py 3 ik
SO B A, DA i A I AU E TR Y
PR RE T AMEDILTZ T G /). Caldero 'n-Lie vanos
AV E L HEN , AE A T, i A A Ak
v Re e fe b Re i . e S RIS E T,
I 2 VR R T, 5 HAE R R A T kAR
BRI L ARARL, 3 2R BH A I 3 2R 11 1R R g B ok TRk
557 FH 2 6 7 v R A R IR AR A S TR Y
BEAMEALT . Tylor S5 218 L I (H. iris) i
I PR D RE AN [] 9 22 A I ) I oAk B (0 O,
3IR), WndGsE AR EAKVERT, WICE Z B9 RS
XA AU B i PR e Y o X — R,
PTFAE A R G TAE =2, 308 b iy il %
P %) Ve 2 15 0 AT BB I L S I A 2 AR, T
AN —E SR L H A B I a5 R, e R
TXEER A E A B . Behrens Z™ #7295 T 4
BRI 7 0TI A8 AU 28 7 DUk 32 DA B 3k 26 49 Jo
pH X PG == 28 Y I AR RS S (He-0,) 1Y
LHAEH . 25 RV, E TG RE T
S 3 h IR R E P LR A FL R, 1 I ik
B Ay ca™, Mg™. pH 1 O, W&h &4tk
Ak, WA, TE R IS 8 A A
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AR ST, A B R B 1 R A S AEAN [
T A ) Bt P RO [R] AT AN TR ARE I S 3
IR L NP3 o S A . O 17 N e el O 11
07553 SR S AT 22 (7 N s R 1
PR AR TR T 22.05%, 2% 45600 ifi 8k 1
P4 L A 5 1 ) 9 B A A2 AR B 10 T 20 h JE AT R
FEE AR AR, 3 55 408 450 5 6 ) 8 S0 Bl i
il SEC R AR T S A AT, 253 8% ) %) 28 o 175 fi
SAL A 2R ALK T SR A AT A X 2 Bl DR HE, Sk
o 2 308 ) R IR AR 4038 | il BRAFE 179 SR WS R 4
FEAAFA) A 2 A 1 0 i 0 B A R R R
I AE R BEFE B SR MR e e AR A 0™, LA, A
WEFEFE Y, ILHE & AR B A2 R B B B s )
TCWTEARSA NG | R TE AR T,
T A o v g a1 P VAR R B T
L5 B v B v B AR AR P, WT L, FEAIR
A, ISR H R ETERFE . AFE A
R AR, HAR RS E Ay, HXF
R AU 38 1 o 12 BIL 1 3 75 B 22 A A S ARV

KB A 18 AT s K iR R 09 %) h TEAR A
BT, SRR T2 i A AR e R Oy SR
EAAARIZ N RE 1A, AT RE I 23 R I — S a4 i
PPl SR AR M ATP BOTHFE, DUERKEAAE D
BFE] . 480N (Root effect) 38 24 IfiL VK Fh — &AL Bk
057 AT 2 =T N = e = o I 164 I B o
HXTR R SRR TR, i H AL E AW AA R
WRFERBLS . 5% 0] 4L )&V (aerobic expansibil-
ity) & Sz B Y B R SR 3 5 HL i LT A E
FORIHLE, XFRACIE i (metabolic equivalent,
MET), H S R LA AL A RE 7 iz shbLEE Ay 5
5590 — LB E S ok T (BRESK S IR AT
Bl ) BT ESAT o RAEUME S T 58 Y B T Ik )
FEHaZ —,

Baldwin 555" % B, A 6 H-81 (H. asinina)
14 101 42U % AR 48 5 T B ) ARARL A I g L Y
o I0HE AR AR N R 2 B i AR S A
B B RFE S 5 TS ARARL, SR T B A8 114 2 A
PA H L 1 A A G, AP B R il
H M AE ) RE P B B M A A AR 38 1 ) 9k
pH T FREIXH A4, T3 4h, HBTE T @5 W E Y
SR B0 LB L LA 78 AV 7K v e 2 1) 8 B i >
20 155 LA b, AR JURR A 52 L 20 T8 B Y TG 4R
R T ik S R ARK A =2 ATP IR R AE o Xl
ARG B2 PT REA Bl T 0T R 22 B0 0
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i F| A AIK DO T ME LA X A i3 . SR I8 KB,
AR H A K T B ICAT BRE SRR I, (EAEAR
FHAERICTTHEE 20% IGO0, HiT & a4k g
PER 5.5, LA IE (Y U I BR 0% 75 40T S SR 1 5
2.7 5 RL R — Ak, E A A A PR iE 2
(AR IR BE 7 2 vh FHEELA 0T A AU A e
PRGE Y, AN A2 p 3 2k 1 58 L AT A T S Y g
JIRVGER . SR, P ERE, TESA AR
AR ATP AH DG4 1L 42 i 2% ZR 48 sl LA B S A AR
PR b, E G A ST S R O OR T R
S . Baldwin S0 iy SR, ol 5 AR ERRAL
IOE (AR 2 L B A ARG 3 AR T A4 G 1) B3R AT T g A2
5 Bl H- SR 7E PR R AR AU 8 T B K Hs g A
FERT R RRER DL o AL A s A DL A5 1 T
HE— LRI, LA A it A 4R PRk 3 AL A A0F 5
TR SR A 1) 35 7 P AL L i

TR 28 XF 80,69 7Y oy 0 A2 5 5T
Alfaro %55 % H 3 FAE# 1] GC-MS (gas chromato-
graphy-mass spectrometer, GC-MS) 1%} 21 2% Iy
kA R BRAE 2 d YT 8 s i AN B R [l 5
B K (FHEI) 2 d IS AR Iy 284k, ks
e B bk AL A TR 2R R A T S
R B A S A8k, WA Se R R 77
RE A LA X 0 76 3 i ok 5 b A AR 38 S I B
L I A T R T RO SO BE A T A
AP R TR ) by T A Iy ORI A0 B O T 5 Ak ) 2 B
BT (B0 2 R A T T R P R T
T34k, W TR B R A T EIUA R A
A A3 JC E A Y % A8 02 3 AT B R UG BF b
(] =y A TG B AR e & P IR R B . A
R, R I ) S A 5 Y — SE R R
12 i B A RRAE AR, R BRI S A K
BAFENRIE . MAHRAL IS, — SR P e Ak
Y (LR . BEIAER) Y s/ ]S SRR A IR A
XA FE 4B 7 1 iz i ) A Sy, I 5 3
T R LA T A i A 0 v ) E

Shen S50 PR ARUN 38 F1 A S840 B 254 Y 48
S RN 2 B 00 1 2 UL TP B 1Y 384 > 22 SR AR
W E Y B Y, HALRE A LR S KA AR
(19.79%), BHLEIEY (13.02%), BEFEFIEIESr
T (10.68%), #%1r. AT K HAERIW) (9.64%) %
X 2 2 S A 7 S 0 R R e A8 B rp 4 Oy
4 75, (HI2 B ATTE A A A 1 B R AN TR A
T A ) 1 T R R A TR 2H R PR (Kyoto
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encyclopedia of genes and genomes, KEGG) & 445
REW, BRAE LKA E YR LR
WEAHSC Ry SE B o T, KA A W AR R
SRR AU Bt ) I S0 3 0 A S A B Y ot R rp
RAERE HEOIAE o AR PR 3k 3R 58 I 45 43 Bt
(weighted gene co-expression network analysis,
WGCNA) 75 THIIAES R . G5 RH], S5
MRS A AL BTG PE L R R S . N ER R
ER TR . O MBS (hexokinase, HK) ¥ M
S FRIVAHOC B AC I 1 Sk 2 b 5 S A 2 MR AT
G -RNA A W5 B I R AR 1 fre £ a6 45 3
Po S35k, IR Shen Z5E HRAT Y 22 AR B AL
it [ Venter %5 7R g AR 60 b AG I 2 19 b, H %
VIR 2R . AR . BRIAIR . FLIR . A A
MR . A MENG . L-INB . <156 PR B 5 o 2 1) 25
(9IS

TEAREME T, BERE R AR DG iKY
PSR AR TE A W) 5 B AT JC AU I A 45 0 2
WVER, BT s s mt | giiit
WK AL G Wy RO SE A 7 Wy g 2% Shen 451
RIAEMRAM AT, 20 i b iy F e R 1y & i
L SRR SRR, DN 5 R R A
LTI R AT | A7 R AT BB v DT 458 T 3 P
X 5 Alfaro %P i 8 19 B T 58 2 BUW A A8 5|
AL R A AT AR 3] T AU 0 7 7 2 i
BT TR A A v 8] 7= 4 G AR e 2= ) AR 2
W REEAY G kR R A 2
DAY JE SRR A BEE S A TR SR I, B R 2

hypoxia stress

UG

TR 4 o F ATV I 0 PR AR & 4 0% b s
T A0 S R 2 35 T X 1 A7 A FH P 2 TR 1) 5
FEAR A0 A A AN PR 25 R AR, 455
SRR IR FAMR 0 S A, AR E i AN
AP AT, B IR YA S oK
AW A=W W22 8] A AT 586 s g A 7 3 sy
AL, MR kB, L-AEIR . 2-F 3 T A 2-
HJL-3- 52 3L TR A R REVE b — M A b B DL IX
Gy SR 2 5 WV AR AR AR R, ML Z R, B
2 11 B A 7= ) 4 S e e D 2L, 106 BH 4 2 IR 1) e Ak
VAR 55 B8 A T e P W A S L A E 2 i
™M, Shen ZE™ YCHTEK M AD S IHE T,
i 1) 25 F5 W T AN R AR g A2 i R Oy X e ke Ak
CAR AT A X I AU 3 R R R S 1Y
FRHE N o 3X ] GE -5 9 110 38 1 R 1 AR HL X A 458
DR 25 14935 10 E T AN ) 2%

WFFT 20, [ b 2 i 4 A A [] 2 2R R
o360 P AR S A RS9, AN 4 8 A Bt JE LA
W, R 1A 16 A 3 22 S Rk 1 R A7
TETARE MO 4 5 0 IR | A2 A A FRA 5 0 R 4
ZIa), X ebs B RIR AR Y AT IR — 2 R
TNEY, 55— NJE D B o 1 7E S8 L LA
Hi oA 28 FN 28 A I 22 R R Y . (HARTE
B, SRR FRALA i 22 S A e AR
UG 5 A AR BRAC T B0 1 A S A B 1)
%, WU EHEA S5 A . S HLEL S
WA PILEM2EFRIEYIAE 34, A8 L
PIBE ., BRERVSIWERY . L3RR T A8 i 2 A

| FEAE RS ¥ ATP
producing enough ATP

0 ' AR
abalone aerobic metabolism

T AR
anaerobic metabolism

I3 AR ORI RO, A FE S 1) 3 R UM (reverse bohr shift)
FIAFE R SRR UM (root effect) R
changing the oxygen affinity of hemocyanin, including the existence
of the reverse bohr shift and the loss of root effect

TR N-FREIE U — 2 R 8 S st
HREA T AR 2 I R T s

producing marine, N-methyliminodiacetic acid, metabolic end products

such as alanopine, N-methyliminodiacetic acid, tauropine.and octopine

| A ATP
A
reducing the

amount of

553 i
glycogenolysis )

LR BRIARRARS 2R BT T e

producing more lactic acid, succinic acid, and arginine

production of
> ATP

El1 #WEERSREFHFTHEERHTEE

Fig. 1 Diagram of energy metabolism of abalone under normoxia and hypoxia conditions
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HEHEA . FEHEAASFAHP AR 2E
SRUPIA 54>, BN TRERMSIE . L2

LSRR . ARREIR B LU0 PR | A 1 D -

SERMEEAIA 2 S . EIREE T,
LR L L IR e AR S B 25 SRR LR (R 5
T B RS . B . HEM R G SRR A
ST HHAT LA SR BT S R R ) . TR
FANERRET , SRR PA P AR 2
RN HEFSHS . BTN, thaRs.
HE ik 2R G0 a2 SR A G 7 2 B AT LAl e
FRORTE S IR RE T . BT A B2 R S T A
R . R AR TR A & R AR . A R TR 26
(TCA EH) . R4 g A 35 R0 AT T 7 1 43l A OGS
AOL, ARSI A AL BRI SRR, Ak
G5 . SR . HE S A st e p
(VR 7 BE 1 1 HL Ak S B 5 , RN T AR
B[R 2A A 0 1) AN [] 2 2RGSO 30 AR A QI
DA [ PR (1K (3= ST e [ O Al TN SRR
AL R FENLA . 24 bk e . b R Ak
G AR . X AT RE S BT A
8l (S MEM L) MEM SRR EERER
Ko RULAFRZ A (il i i bk 1) 4z 3% 3
L R fl 2020, e I R ok AR BEAR  A dE—
Aok BAHEIE B BT th T 5541, Venter 5
48 B R 9 A [ 2 200 D) e P AR U a0 =
PR A A R BB AN TR, B S LRI & A T AR
KA, Hed G A 52 LA AR A8 T el
JRIEL, x]RS e U R B shER E A G,
Behrens 551 18 75 PRI AR A M0 7] (24 h),
AR SRR B R LR e LA B 3k . b 5
FPAH 52 L2 B4 Itk B P 8 B R T D-ZL R A4 i
iz o AILPA I I6 B (8 D-FLER MR BEARIA], (AR X
Tk e, LR A A R B T . A S
R, SIRAREE A a1 & Bk A R
PR B LR S R 2R M A R . AN
RARSAIC S I E S, RAWNE . 702 R IV e
Tt 2 6 8 (H. diversicolor) W LA - &, TIAE
WA 2 L P UL AT R A RIS s HE R . SRR
FLIR W B T v, % R R 7 B P vk B A A1
ICAE e B, T 2R B PV BE TR, R
FPRH - WEIR IS 0V FEREAR, (AR MESf  B
e M AP 4B 5 8 96 b i 24k €0 00 g B e B )
JL PR A 20 2 () A QA8 Ak LU B e 24 b s A AR
AT b 2 2R Y B L LI AR 5 A2 e TR AR
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UM A 5 el AR SRR W AN A2 R I B
A4 JULIA) P8 4 2 0 R e AR R B 8 -, i LI
SR AL TR B A A S e RE 1

14 REMEXEMA pH BIFZM

AR L AEE R . s R DL ETE
% BE AR 4 2 TR pHL B R B AR AR 2R 25 1 Y
ige, S|AELM AL TIRE e, A
HMOERNAN S T . DEAh, SRR O R A £ R
e R R 1 DT A DR A, ol R A R
TR REIR . 34N, pH A I i & 1
SEMEMS, AT, pH 7640 M 25 AT RE 0 4
P B REE EEMEH . HRC AR E %
AT AR S 2 X 6 40 B P pHL A R T 18 AF 5
4n Tjeerdema 45" g 1B W8T 9% 5 M 2160 1 52 (fIK 41
rif) 1h, SRIGRWEEK 25 hWIkE G, KB
HTE 2 LA A pH Sy 7.5~7.6, TiAET#&1h )5,
0 A Y pH U B FEAIG, 38 B a5 R R 1K (pH
H7.0~7.2), HEPREIE, AN R pH Bk AR
PRE EIEH K-, Tjeerdema 555 W5 T H T8 S
FAMRANE 5 PCP 2255 1X 2 Fi s 75 21 8 1A N
PR EAE R o A AT TAE B3SO K S, SN
fif'E T PCP PEBUILIRE (1.2 mg/L) 6 h, FRRE
IRBET E KT 2 h, SR)5 T 88 45 min,
5 PRI T IS 099K T 15 h DU R A 6 179 Pk
BAEOL, KINAE PCP 25, MIZHE AN pH &
BRI, a8/, 400 Ay pH D) e ik — 25
FEAR, (HFRIAE TG REK 15 h 5 ik = 2
R EK . AT, o R BUN AR A
R BOCBEIR 1Y PCP 2 75 3X 2 A E | 9 41k
FHEAE B PMRIZON o RS AT 3K 53 4 3 1
fif] B2 7% T 120 pg/L B PCP " 6 h, #RJ5 T8 1 h,
PR TIRIFEHR BE Y PCP b 2.5 h, PR Hk &2
L, KIMTEBARRIHREE T CREEIEHk 1143
Z—), PCP ZF&A X i~ A B b iy i3 2% . AT
U, T 87 B0 AR AU 0 AR BE 1Y PCP 22 5%
X 2 AN R A A LA BLAE FHAS LA PR R0

Caldero'n-Lie vanos 55 " 1) ff 57 4% S K W,
2ot 24y S 7 v IR A D] %) RO 1 T R R
pH YIREAR, BT IS, Hoal stk
R A pH YW E B HELLKF o AR
R, SREIZhHISE R R E TS, pH BERL,
R A A J5, LT ¥ 1 B R 5 = R pH 3
WEHI N, e R RIS I E T, SR L) b
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(BB B E TR, pH MR, (HR A
Wit 5 R pH K E BILKF . BB Lk
A BEN T, RS A A . fEmiR
W38 FARSA 0 4 A A ZVERTT, 414
BT EME R AR SR BB AR
K pH # AR UL B ARk . SR, FE m IR E A
it B R AR, TR v R R R A
BEA SR, pH WERAE. E WS, A
A 1A AL B i KR BB OKOF, {3 pH
Fb T BREH A 7, L 00 400 i P 1% pHL Bt G 4R
W AR AR AR 2 T ARG . 33X T 2 Pl T 7 a3 )
Bt 25 PR P 3, R Ak e Y 7 L B = 3
A5 R R (HyCOs) 3G, 15 5 pH FEAK
1904 4E P32 Bl2# K Christian Bohr & BLIfL ¥ pH &
(R REAR B — SRR 23 TR (pCO,) Y T i fof 1L 21 3K 14
XiF Oy BYSE IS AR, ML 2T 26 1 A4 S8 A R R AT
AEmg AR, Rz, pHIEMTHE L pCO, A%
%, WME M £ 8 X Oy BYSEAN I3 N, 218 A
SRR, AEIML AR . pH X ILLL A
21 7 8 3 Tl 5 Wi 45 R A I ZR RN (Bohr shift),
EAEAR AT, —Se i 4k B pH AY R AR 20 4%
TNT ML S AR SRR T, R 1A R R
(reverse Bohr shift)™" ™, X F 46 Fl ) 038 in A Bl
TR E A T 4 A R ORI
oy HLAT — 5 B 0 S BEEA U e B, Ak,
AR, ERE AR R, PR
B R RA BT HIERR, S AN pH (A
REEARRES, 3K iz ask e Stk — A5 PR A T e ) f9 41 4
e R ATP (9774 . R B30 2 7= A 73 & R A 5k
SR, L2 5 A R o 22 vh e, Bk il pH i
IS A R AL AR TS R B4 B, A 2 RN
[F] WL A, 0 Shofer 555 $ig 1 77 4 AR AAUH 8
SRR A2 S 21 6 40 R P 1 pHL 34 R L S 2 AR A
XL LSRN AT 5 SR TR R TR A 6, B
AR TG B — 25 BTG A AR -
1.5 RSB L FHESR R R

1 B 38 3¢ 47 B B Ao B i Bk 4 B
(myeloperoxidase, MPO) #97&E M a9 %5rh  HIR
T AR T I 1) 1 2 v A /0 1 48U B
T (0,7, HEMAA H0,), HLEHE (0,)., B
e H H AL ((OH) 2575 MW 5t (reactive oxygen spe-
cies, ROS) /=, (H 48 FL A M i, XL
ROS =& B EWM L . Mkt Z iRy
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S XS LA At . FRATTHE A4 00 B %) T AR iR
5 H A AL, SR A BRI T IR T —
B A AR R G, Hob O A A Y B AL G
(superoxide dismutase, SOD). %A L% (catalase,
CAT). AR (14 25 W H ik i % AL ¥ 1 (selenium
dependant glutathione peroxidase, SeGPx) %5 N
PLEAL RGP RGN, BERS A R BR B A5
WG e AR Bt 289 ROS, SRR I AL B K 4
T4 ROS ML) . AHESEH, R
R, A ELES T MnSOD, CAT. SeGPx.
i 480 36 55 (i % fk ¥ i (thioredoxin peroxidase,
TPx) 2 A 1) R 3k 7K 34 745, DO 7.5 mg/L
W2 4.5 mg/L BYHT 6 h A, JULALEIAY CAT BTG 1
WEMTE, WEWRE 2R ERENKE; Y
DO Hi 4.5 mg/L [& % 2.5 mg/L i}, JufL#I#Y CAT
TEPER T, RS 12 /NSRBI sl , B
BT FEIETESS 108 /NIF R 28 1F 3 K -1, jx st
W], (AR T, 8] 42 & H 5
SOD. CAT 55 {1435 P4 K T o ARG Sy i 7™ A= )
1 Z 1 ROS, MIMEHLAT 2GR R, B2
IS8 77 A 1 ROS ML B AR AL RE I, Al
S RECLIM AN DNA i3, B2 51
KRR L AT MALE R HZ) BI7E DO 2y 2.5
mg/L ARAMHE AT 1S H N, HUIER T
% (malondialdehyde, MDA) [ & & i % T+ &,
RUITEARSE A M 40, 8K NA ROS 4, Bl
Ja kAR A, B 14HIE, MDA @ik = F
TEH KT o ARSCHL, SR YA BETH K (gluta-
thione, GSH) &t W 7EAR A B0 HEAT 255 1. 2.
3. 4N AR EAR; CAT BTG M BARTERA
AT A LA B R E T, (R EARE
HHAT RS 2. 3. 4R, HIE MW E AR,
RUTEARA A FFE S 1 DN, ST HY)
fifI 5% ) M AERE LN RS, AR IR U8 51 & 1
SEALRIL, SR, el T A N Y R R MR R
TR A 8 B R B AR S i A A, AR
B PSR L 1A I, S0 4 i i 2%
RAEIR A HAAAAR S . [FAERY, SOD AYTE PEAEAR
AT ES 3. 5 4 D i B E AL, ]
UL, A T AR 4L P 2 (1 860 14 T 4T S S HLBE
SRS, SEmy R, A, WA HE
fe i, ARG GPx WM SZ ARS8 1 52 2
1M SOD F1 CAT BTG PE NI 52 % & B Be i 5% il i 2%
TEAH R ARSI T, ARS8 (521 4.1 cm)
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f) SOD 1 17 P W 3 =5 F i fif (521K 6.5 cm) 119
SOD A3 M, 33 AT R 51T A i ma I 0 4 i ey it
A8 P BE T Fb S Y 1A G o

BN, VEREALEE, MPO g H,0, 5 ClHi#
ez i HOCL, ] 7E — 7 B2 b 2] R 4P LA 4
% H,0, B HIVER] . 4 DO /1 7.5 & 4.5 mg/L,
JLALEE) MPO V6 P 5 IS SRR AR AL
K, DO H 7.5 % 2.5 mg/L, MPO By P
ST = AR 24 /NIHA B e (E, RS BRI
A I, AT, AR A TR, BT
$E MPO BTG, K AR U8 175 i P I 0 O 7
A1) Hy,0, 5 CHiEfbA i HOCL, Kl H,0, Xl
AR AE R, DA on X 42U 3 )3 107

T AR Y, HUASU AL R GERR THiA L
fiigoh, I ALFEIEREHT A AL T PR IEE 1 (heat
shock protein, HSP). &t HHK. ek (cysteam-
ine), 454 1 (selenium binding protein, SBP),
@etE H (ferritin, Fer), 4E4 % E (Vitamin E, Ve),
e K C (Vo). —H LA (nitric oxide, NO). B i
% NZE (B-carotene). Z£ i€ A B, (L-carnitine). PN i
M. FRAPRAE . MIRAAE, BR A SR KA e
HARE . A w2, DL IRATT T o i i A
11 Vosloo 557 i 1o A e A 61 Y B 5 2
Hb, ) HAB AR BT A o TR AR EURE TR Y
Jof i AR WARGE , J DT

1K E 18 2t 88,75 H B (lysozyme, LZ). B
AAL B (phenoloxidase, PO) &9 7% 14 &) %k
VTR B B S R G ), P EEK
it BO R 2 M I BERE . DHSERI], 7E DO Ny
2.5 mg/L WAREMMNE T, SESUEHIL) 1Y LZ 351
BRI e VAN <R R R s WA RO S R B A
B0 ER 7S N EAR VAL G =Wl = IS ESE S s a2
ISR A8 230 o 11 55 BRI ST R g T, 5 R R
o 0 e o T AR AR A B0 10 I AR e P A v R AR
HUEONRY . ISP AREVER . PO WGP
{5 B A% B % ) B8 55 4 K o Cheng 451 #f2 18
£ DO 24 3.57 fil 2.05 mg/L (1% S W38 147 54
24 /NEFR, JUFLELRG PO A6 7 20 1) d 2 T
T 38% 1 69%. AR, SR, (KA
Joir38 B 52 A A 38 K HORH BARE T 34 25 % PO Y i P
PR AAEIE R A DO R, AU I
WRELH RS PO AT M LSk 2L B AY & o A S0 6 1ML
PR H ) PO A I P A AU 3 1 R A Y
Ak, TR ALY S R N AR, R T
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39.13%~79.87%, Lk £ AN 2 IR L5 R,
MR ) PO TG PEZEAR SNG4 ALFE 10 h,
AP 15 h R R TR T 53.18%~87.05%, {H
TE 52 E AL HE 20 h 5 R &2 B OE B4 B oK
AL AT DL, AS R R 28 B B Y G5 AN, FEAIR AR
JBRia R, Sk R ] AR R B B S ke N
HAIRPUABE N B BE S, U L2 A St A5
HONZEH

1K 18 2t 60 FLBR B S8 . AR I B A B
B BA 33k Bl 7E M 04 % v A AN (IR AT 4
T ) e 2l i A B AS FRR AT A
M, FENLIRPRE ST R, ILMB A . O
WU DS T PRV AR 2 5 T AL s . AR FL
T 08 S A e T e o A v 1 PR g, (ER LA
HUAR R BT LU Al e 388 e, Bk, H
R T LA A TC A R RE . A RGE R
R, R UL A L TR I S 1 90 e A A AR e
SN PR S5 T A 2 B B s, (HHE
TG PRS2 BURD IS R 3, AN A SR L )
LR Jd S0t 1 5 P AR b e SR 2 B A AR i 2
K Tt R AT ) T2 D) Sy M T i o e B PR A O
SO PR A ; OO S — PR A, HThRE 2
MRk, FoAERRRE AR R Y T RE
JE A Al T 1R A4 I =X P I R AN ADP B B ATP R
R o AT, A DR T AR ATl T 1 0% e
P R A S RE T . PRI, A
50 UL PP A A R P T A R AL BRI T
55 10 /INET B SR, O Bl A K 52 ST T )R 6 T 3
REARG, 17T 2o 2 6 J2E UL 1% 0 S0 Tl 110 5 P U 8
BENEA, EEAFMET, SBEErh i CR
T P T T L A B P i s AR AR A N A
ARG RAETT AR 0 0 J AL v 1 A T R 38 g 114
TG PR 2 SRR AE T AR fh ke 34, i A 6 JE AL
H ) AT D T SR P 3 e D S S T 1 BRI A AR 4k
s, VLIRS 0L AR, s L
F14) TR ) T2 4 T ) 5 2 AU S 2 AT ), g 25
L B R T T O8I %) 95 1 DUt 3 S R [
) B0 11 LR L T R 95 e A I X I 4L
A AR R IR, 3O 5 R R R S AN
IF) Py S s ke o XA e W2 A 56, YD 48 5 48 o i i)
TR (submissive), 2% 25 B 02 B R S 3 38
97 (active self-protectors)™®, ELAA 4 15 A% AL i
AT IR A RIS

REM AT N R 9% WIETATR, H
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G 800 P 3 o — A SR FH % DAY %) DR IR A AT T R
s, Fisiat s, S o T ER S BN AR
0 A5 7 A — S B LR N, A T LA P A L
TR S il L AT D 2 O LR I S A A0 P A2
Fggmd, e A IR . FLER SIS
SRR R A AR L, AR E S EMEAIET,
Xof 28 5% T AN 1 1 e 1 8] R0 1 88 T BE T 1Y Al s B
i 1L 3 A PSR R R R LR £ 1Y B A TR I
LV 1 PN TR R 1 B it R T R S By IR
S MRS R BT R R R S, TR E N
74%~76% RH (A XHEJE , relative humidity) . i
H 15 °C &M, o mAEARE MM 0 #E 1T 250
36 /NI IR B AIAE, LR Y 2 W Rl A T
A R RN SRS S ey S DA = <RI S
FEARSAUDR A T 2R 50 36 /NAF I IR Bl f i fEL, P48
24 h KA ST, FLRR A & A TR . B i
Y PR R R R 1 AR L RR B Y T T
E A 0 Vi i A 375 R A i v R A AR T &R A
U AR R

2 fIRER X 0 4 I S B AL FE ) 52 D

AN, A AEPFIZ BME], LRk
L ATP ORI L AN AN T H. 25 38 B
FLIR AR 22 0 e i ik A ok SR Ak RE 1, BAETE I BE
HAHEN AR, B EALA R s IR, S
H o 2w m B A, NI BRI FE T

I 20— E D RE AL 20 7 A 2 ik AR
o HWa xS HLAE B F I, SR X 1
20 e 3 RGN AR S, ™ N L 2 ek s ot 4 L )
FETT; IS0 ML A WEVE S . BRI R
ST A P A J5 %) A P 1 A ) 2 B )
o e iR A o L2 AR AR B P s et T 3 0F 500 1) £
RERG W MEIRTREE , Il 40 M 2.4 (total hemocytes
count, THC), IMZHAIFET- 2 | Il 40 M A WS 77 .
PR . I 200 JHL 3% A S KT RN PR BRS04
i S S e D S 40 i S 2 7 10 RE 1 A8 AR ) 32 248 AR
W R, FE— R IR AAURE T, Y 20
Yol o332 B T H A SZMR I A i 40 SR
0027 e S 1 11 R RN AN 22 -2 1
20 J 355 P S KT R TV BRSO 8 A A 1 Y
A0S 108 AR R T A i A TR AP AR 1Y) R A
T, REFSERH . AR BAREE I E] Y
THC Il 2 i 58 T8 14 22 57 0l 5 b 25 G 8 5
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12

n7E DO M 3.59 mg/L AIREAMN A T, 48Ukl
SEELEI) THC AUMAIMAET- R 2 R 8%, &
1145 A AEA TR AR S Bt st 1] i) THC 1L 40 B 4E
TR ZESFWRE, BN THC WAL R
BEAG S0 O HFSE, THC Sl , SR )5 S 18 kg
T, I AEAR U8 SR 1T 25 48 T 24 /N IR
i E, SRE P A A SR
) THC 7E R L AR St p £, (H R4S
) THC ZEMR MG T R IMAR R . s A6
SRELERA M AN T R 2ZE M B, EN&H
TE AN [R] (ARG W 326 B[] 1740 100 £ AR AE T 3R 1) 25 Sl
W 35 BEAR U0 I HFEE , 4 0 4k B0 R 2 2 ff
I AT LT R R e RS T, SR R REAIR,
{BFEEE 96 h B SCHGHE T =5 AR f ka3 . HL s A mf
REZAEAR A8 ORI, I 200 6t B /INER 43 1) E
T2, WIS A B A0 e Ak, (HEREE Maa
FOHRFEE, RSB X I 20 it A0 SO EAE ROk ik
FT AFEAIR S 38 54T 2256 96 /AT, I ANAET
S T o SR A A I 40 AT T R A A
SR R, (ER T AR AR B AE X 7R T
FERREAUIE T, ASTR) A 28 0% 6 ) I 200 i 7 s 3
PEREHEEUK F 2R AR, (B el A%
AN TR] P8R G20 3 B[] 6 0L 400 AR P8 78 W 3 P AR 9
FUKTF 225 3 o QN A% 203 R 2 35 0 1 338 2
UK 2 e T & 5 BRI AR b e, R
75 A5 B AR —HE, ROS $5% =5 18 2 B AR U3
HIEE 3 A 6 /N, 2R #6f11Y ROS {H b 45 80 £ fifd
BT, AL Fggm R, ek Ak AR T ook
U AR o (<02 S O Eras L R R e A= SHE RS 1
B A AL REFAASTR], 48 0 455 060 1 1L 400 B 100 4 W 3 2
B AIG RU a8 P RS2 S e B BRAIK, SR 2218 Tt
SOFERINES 4% URSEZ NI E-SiiS0 M s 0F <=
R PR i ) 22 S I 35

HHWroE R, RIFRAHI THC ., 140 E
WEIGME . PRI R . P T BR R AEAS R AR E
BN, KEa# 2 FREm S, (DO L, H
XL THC . M40 AR WG 1 . PR & . P
T8 BRI >, angE DO iy 2.53 Fil 4.51
mg/L IARE A T, JUFLELR THC B A Tk
B PYRREE I D, TFEARAIE HET T 25 12 /N
AF BB S A 5 4 I 3 R A
TEAR S0 BEAT 255 24 /NIF I P A B S0 A0 R B
M P BE I BR R0 7 38 o 17 2 50 12~24 RS
48~72 /W 3k T B E] T B AR B . 7E DO A
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2.53 mg/L IREEME T THC . 20 B A ey 4
WP 42 A . 0TI BR R I FEAIK & 34 Lt 7E DOl
4.51 mg/L BYMRAER0 F B AR R™, 48
41 K I [E] 78 DO My 2.5 mg/L B A A T, H
THC & #F k>, Pran i mae f w ERK, mse
DO K 4 fi1 8 mg/L [1EH T, H THC YA WL .3
WP EARE MO, B THC, i 20 i 5 1
TEPE . WP . PURE R R A o R R T R
TR T I G T BRI SRR

UEAh, FARGETE 1, SR E S 5
10 °C W4 F T8 30 h J5, H THC B EFAK;
R R 20 °C AT T8 24 h )5, H THC W
WAL, FEEEN S M 10°CRANT, Hill
YA AE TR A ROS HyRfi 45 th T8 5 B AR A8
RFSE R T m i g, M E T 25 30
INERIR B B (e . B2t 24 h PR WS, Hom
Y P FE TR ROS 5978 FrREAIG, (EATRER Xt 1
R B, — B A R Iz i A v
AL TE AR, DR A MIAETGERE T, M
M FEARIZ FiRE . SR, AWM RN, s
R KH, R —E MR EREET, H
B ] R, AR A LT R AL
X} B0 R A7 5 R T B . Ak, BEE T EE (A
IS, i ) 4R B 0 2K o B 2 T, o
e, Zeiife s b TE8 6 h, FHEIEHARRE 12
he, HoIi 40 A R D, A S P R
fik, 4HMd DNA M85 F 2 7=

3 RS aE 0 3k DR R Ak Y R i

R AR AE ) B0 9 A= B A b L S BEMLRE S5 O T
77 A 1 5 i) g JE X B A DG PR A 3 58 7 AR Y RE i)
WUIROC ., Ry 13 AR AR P PR, 20— 2
HEEER . PrEf . IR T sEs R
B RE SR OC 1 BE PR () Rk A T 4 o
3.1 REMEXERESRIFFEF (hypoxia indu-
cible factor, HIF) X HE#EEE FIAAIFZ M

A0 ER A, SR A B — RS
() 53 F A BLE] o I GG 420030 8 B 1) 5 5 o
HIF {553 B2 1 58 18 s i —Fh 2 50 E e
FNE (e B AL . AEAREUIE R, HIF-la 1Y
BHAL A E], TS HIF-10 AP I BEA R
AT SRR SR, F 1T DA AR T 9 i 3 A A%
JF 5 HIF-IBZE Al Rk, Ik Rk S

R E K7 2: 2 E /) sponsored by China Society of Fisheries
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p300/FA It H R S v T A 45 & 2 1 (p300 and cyclic
AMP response element-binding protein, p300/CBP)
SN BAA RN E Ak, ZE81k5 s
FE RS Bl s 5 15 81 i i U N TS (hyp-
oxia response element, HRE) 54, MM shi0 3
PRI B (1R 2) 0 FRATTIAF SR 27 R, FEARAR
a8 K iR AR AR S e T, S X IREA AR T,
Ze {0, 8 1) BB 42035 5 R - Lo B IR (HITF-10) B 23K
HKPAEZ A B[] 38 3 Ty, U HR AR 4
(1) HIF-1o R IR K- AR FEAT 258 4 /INE i 3
LT R TR, UL HIF {5 508 e s
gl [RIEF R WREE ) HIF-1o 19 FUFHESEIN, Anfilish
A H -1 (SBP) BN . —F LA A (nitric oxide
synthase, NOS) F&[H 5 i YR FE K F-a (tumor nec-
rosis factor o, TNF-o) ZE A 18 22 38 /K- Bl 2 AN
[Fi) By B AR TP A S TR A B 1 35 . R W HIF {57
5 300 [ B SR e PRI 4 0 ) ) 4L e 3 v
AW E R e R

B4R TN T 1o (HIF-10) S22 30 35 UK E
FAAS Y B RE S N 1o Kim 257 48 4 2 il 22
LT HIF-1o 7EIRAIE T 34955 S 3R 0K
Horb S LB LU 1Y HIF-1a (4 R0 e, 30n]
A5 AR T SR AL, BB B
B g E AL, AT, SR
HIF-1a B A SV e % 98 A X005 5 HSP9O
4@ 5 2 A (metallothionein, MT) Y ¥4 5
PR AR X DA 56 I A B 32 4L L 7 X A b3
LB R EHANKMET, HIF-1o FRIALEN
Vi 5 Z B (lipopolysaccharide, LPS) 1% 2 FG I
(Vibrio harveyi) WL iy ¥ 1 25 Hi, ARSI
0L 1 R AR K B o X AT R B 32 SR EE I
SR AT | PR A TR R AR AR OR R R R
FEUIREA o SR, AR AEUB 0 AR B R i B
AEBEXS HIF-1a Y753 R BA BRIEH] . B2,
HIF- 1o % 480 AR S AU AR I 38 174 2H 2R S 1 50
AP, HIF-1a £EA UM i B 050 K
B8 22 1] B AH B OGHK (19 38 TR I vh R #E4E S B4R
FH AT A B S 36 AR At A DG 1 38 PR %o 5%
B B0 1% £ R A LY s I B AR A A I RN

32 REMEXNEREANRFERFRENFME

W AT AT &, B SOD. CAT. SeGPx. TPx.
Bt %038 25 -2 (thioredoxin-2, TRx-2) %2 B4 4t
Ak R G A AR A8 B & 1 AR
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iR A e
hypoxia stress

HIF-1a 52 R4k 40 )

HIF-1a #4511 2
|the hydroxylation of HIF-1« is inhibited | HIF-1a is accumulated

fif]
abalone

HIZ B
HIF-1a is being

TR RRIE R &k
HIF-1a is forming a complex with
transcriptional activity

b

5 HIF-1a 456 B — Rk
HIF-1a is combining with HIF-15 to

transported to the
mucleus

form heterodimer

IF-1 is combining

5 p300/CBP 454
H
with p300/CBP

5 H BRI 145 2 7 B 5 TP S HRE 455

the complex is binding to HRE of the promotor or enhancer

sequence of the target gene

JA 2l HIF-1aw SBP1. TNF-o 253 K fll NOS
AHIGIE [ [ Rk
the expression of HIF-1a, SBP1, TNF-q,
othergenes, and NOS related gense is initiated

2 REMEXEREFFEFREEEENFME

Fig. 2 Effects of hypoxia stress on hypoxia-inducible factors and their target genes

WFoE R, SR, BRI R HA LR
R, (EJR AN ) 2R R Bt S A i IR ) Rk A7 e 22
5o WMAEAREMMNE T, SERELZH S R MrSOD
CAT. TPx 1 SeGPx W) % ik /K F ¥ F+ &, 1
CuZnSOD I TRx-2 W) #ik K F-HIA WFH =,
VLRI UL, BT Ak 2R Gt rb 1 S T) 35 R IR S 3
TEAE AR A R AL, RO R AR R, (H2E
7 G =N D) I R N i B 0 N 0 P -
TCE a7 AL A RS, X AT g
5 ) P A O, T LY A R T
AALEG T, SeGPx 78 AL 0T 915 DL T 815 5
KK S, P, TR — RS A

PR
3.3 REMBX 8RR R N EERIERIFE

PR TR 1R A P AT IO X A AR A A5 3 i o
Ja B0 B — 1 AR T R PR 3R R T 7 A 1 25 A DR ST
MR BT, ] T Ok 4 20 B IR AR 45 45 136 Bl 40
LR ST R ZE A AIALEE . R ERIIFE R B, 4
PR 58 % 5% 7 1 (heat shock transcriptional factorl,
HSF1) 2 % 1% 1 40 i pia 5 o iy AR, HAE
% 5 PR s 2 1 PR Y GO0 B T (heat
shock response element, HSE) 5l A4 &, W47
PRSI AR RS, MRS FAE G E A
1 (heat shock factor binding proteinl, HSBP1) ff
5 HSF1 W3RIk . ARRIBNEBF 7R L8, o6
#1f%) HSF1. HSBP1 Fl HSPOO [ 4% ik 52 A% S Wil
e TRARR U 5 3 Y S 3 o G e LR A
E i) HSF1 Fl HSP9O 1493 35 7K P70 AR S0 31 Al
e TG AU 5 e N A B A T, T HSBPL

https://www.china-fishery.cn
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= v/ 11857 ) = (AR [ = o i N S R O £
HSP22. HSP26. HSP40. HSP60. HSPT0.
HSP105 45 3 P 3R K78 IR AR R e T
W TANFEREEE T . BHAEX HSF1 3547 T4
P, b A PR A 3Rk R AN [ B A A
—2 Yy, AR R A= BT HSPT0 F1 HSP9O
)4 24> HSE. Ui FH# ) HSP /E A 3k
Gk I RS PNE 24 esIE7 S VIR (IR O K (A=W I S1: ]
R v Y0 2 B 47 R AR AR R 2 O . A IS
B, HSP70 M3RIAZ LB B 2 . 78
b A AR E AT, g AR B R AR Y HSP70
S8 FILNHAE E F (o-Tubulin) 1 L4111 .25 &
TF4hi, pAEER AL R HSP70 5 a-Tubulinff i3 4
J 38R B L B A AR A3 Y, Hihe S
VEFABLI 75 5 pE JE # A AS R 19 & B B BOHIRR
AT 52 RE IR A DG, B TFHATIR AT -

3.4 REMEX TR T X EERE
IEAD)

AR AT, B3 o dn i 2 i BlAE T,
Sh REGR AN 1) B2 IR BB (necrosis) X418 T 200 it i A,
B E AN, 628 S AL T (apoptosis) 14
BEHLRI TP AA SRR RISk A C . HAIE
I 0 U 7 0 MR T R OGS DY 32 A e At O
T- A F (defender against cell death 1, DADI) % [A
F1 Caspase ZE4E DI REH, (Caspase recruitment domain,
CARD) £:[K . DADI 7£2: 5 G i 45 F4n fa s -
WG R EEMER, LR
Apa Ry, HAERTE A E . A5 & B b
(8 DAD1 TEAR A8 AT 250 4 FIER 96 /NIF A%
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IRIKOF 3 T, HR AT e 2 AR E I a S
i3 3k b R 32 i R Y R 3k R R 9 R AR Ul 5 ] i
AR RYR T, (6 G 32 AN 02 11 20 O T 47
CARD 7EZ 5404k . e . 40 1 = 45
HHAEERENEH . AR LI, EREW
AT R 192 /NEE, ZR LY CARD W3Rk K
iR . HIR AR R A S, AT
77 L 210 B U 0% % € 3 T R A A5, AR ()
TR CARD RIS EIHE AL =07
5 2 1% DAD1 78 0 %I 42UM 38 B A9 B2 iy %
AR —F, U HEN , TEAREUE I, AR AT GE
SR 3 Ao IR Y A O A 5 DR R A ) 3R o
AL T

35 REMEXNHEERHBEXERRIEN
A

A A B AR ke A R LA AR A
JEHIE AR A SRR E T, R ERE R
KA BRI K Z W52, PRI AR A
VAR B RE L, I SRR D) 2 4 I A FE
AEREE IR RS, ST A SR T . kL
AR SRS T A R R, R A X e
INREAIRAS, HETMISm ATP (97 5, ik, SHA
R R ) 223K B 32 A8 52

40 Bl 5 2 C & fL i (cytochrome C oxidase,
COX) & —Fh LR EE 5 W, 75 WAE F Y B
J& B Be AL B MR R B 4 i (. % C 5 R 3] O,,
BRI AL F B DL ATP BB R A fg 07 1
A CEEVE R, IRl Ay 2 P I o e BRI 2D R
DIRePE COX M 13 AN I Al ; R 1, 2
3 H A AZ L, RSB TP g A A
A 10 AN FE A R s ™, HRiESE H, DO
VR 2 W g AR 6 COXT 3Rk, MRS
WE R COX2 Ml COX3 3k 7 98% %A M Al
FERINA T, COX1 Fl COX2 ik /K- 44 Bifi L
A TF T o TERLEE R 14 °C I, 82% % 1H il
FEWN A T/ COX1 B FRIK K- LEFLAE 98% 4 i Al
JEM AT R BACFREL T 2.2 4%, TIAEHREE A
19 °C I5F, 82% AR A T 1Y COX1 RikK
- L LA 98% AU A i aE T A R IR AN T 4.8
f5U, AT L, A R A A AR 8 (82% A AN
YT, ISR, COX1FRIIK RS E,
X AT AE 55 20 B P AR U 30 1 — AL AL TR
A I T COX MG A 20, i sL & 4b
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FRXT COX3 ik =g ma ™, e, 7
RS 38 B9 9T . T I 560 1% &0y o 30 o o e HL I i
FERSR AP AL Z A0 RE & BEFE a2 Y
INEE, REAREE S AR AE A, b GeRE, B
W IEREAR COXT 13K KA AR EUM 8 855
BT CoXl, (g PEuk R g i (purple acid
phosphatase, PAP) & R RIS 22 i 1k g 5 A 1) = 3k
2 W AU 30 i S R o PAP FE AR R Y AR
W BB ARG S A R A T Y R A EE N
PR . AT KB 2% (LB 4 b i) PAP TEAIR
A AT LS 4 /NI IR KT 3 A T X
HRA, (R Y haa AT 25 96 /M, HR/KF-
ZETXIRAL, UL PAP 25 TR A a4
B BAR IR AL A ik — D9, AF ik
MBI B — B, AK 7R AE R AR
XA R BRI I 30 T AA G028 55 5 I 34 R ¥4 9 T 2L
FIVEF o FRATTABIF ST 2 B 2 (0 o 17%) 8 R 1f 240 it
H ) AK TEAR S0 K s TG 4eU B B 38 T 1 3B
Gy BB IR KT i 2 v TR R, p I
T AK AMES S5RERAREHHY, mMES5T
XIS AR e 1w 7

3.6 REMIEX 6% EEXEEREERIAR

Al

RARUIE S, B P — S B i A G 110 3 % B
R & A T S AR, DAREXEAS RO HILAA
TR o A Ry e R S v R B AR S
NF-kB (nuclear factor kappa B, NF-kB) {5 il }§ 7
St FIR A D A ) A A RS S i3 vh R 5 A Y
TEM . BEE R, A% (8 NF-«B {5 538 B i
20 Z A FE R, 4N B A 40 i 43 Ak B 1 88(myeloid
differentiation primary response protein 88, MyD88)
R | Toll BE3Z A 2 (toll-like receptor 2, TLR2) %
. TLRA. TLR6. FMRIRSEIN T3 ARSI T 2
(TNF receptor-associated factor 2, TRAF2)%E A |
TRAF. NF-kB. NF-xB#ll &l [ F (NF-kappa-B
inhibitor, NkBI) #E X | dkirin2. A &-1 Z KA
J I 4 (interleukin-1 receptor-associated kinase 4,
IRAKA4) KPR A FEAR AU 38 K e il I U & i
(A [5) B A o ) 26 3R 7K1 356 AN ) 2 ) i 2 78
b, s S0 Al 1) A2 2 B Y i 248 e 7 il 2H 21
NA AR w0 Z A e 5, NF-«B
15 8 B P A X SE AR DG R R R 2 5 T IR 4
BR300 SR g8 B AR S o [RIASE, DA Sk SRR ) 25
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SEFIR WP, Y I 200 B A 2H 2 HRAEAIG AR
oIR8 S R T BE AT AE 2 RS, )CH AR E &
FEGPE DT D) RE AN [F] o2 I T AL o

PI3K-AKT (BAGEEALEE 3-34 7 : phosphatidyli-
nositol-4,5-bisphosphate 3-kinase, PI3K; 2242/}
& W2 % 1 ¥4 ¥ . serine/threonine-protein kinase,
AKT) {5 53 BN Ay S 5 Sk 2 —, 7
oo )57 T EG S M I e # 2E EE AR T . ESE R R
P =Y ST R A=W 7 STER S P Y (A=W S 1 S S e
Yol e, AR (o Ao I &4 A R0 JH g iR 2H 21
() PI3K. AKT FI PI3K-AKT 1553 % A 1% Hofd 1
G BER () IR A& A THisr, R H BRI,
# W] PBK-AKT {5 5% 2 5 1 milt i . (K4
olp 360 R v AT 4RI A 2 5 | A P B e A A, Tk
AR N 4 2 2 R 20 21 rh i 8 3] PI3K-AKT 17
53 Y 22 3R B AR K R R A A SR 1 SR I
(multiple epidermal growth factor-like domains pro-
teins 10, MEGI10). I/ AT A= A 4 R 0 B 47
A FE [H (platelet derived growth factor subunit A,
PDGFA)., KT ZARIEA (epithelial growth
factor receptor, EGFR). #KFEH HFHH (HSPYO-
P ZREERKNFHEAEHIRER 11RER
(MEG11)., Toll B 3Z R (1L A (TLR2) 55 6 1~ Fifi
DO /)8 1M 22 7 RIB MR, JF4s A X s Y
FEAR KV Bl G S P38 4 e ) (R B9 AR AR T ARk, T
R JE 1 A AT BB R IX 6 A 35 PR HE B A S A i aE
RS )5, FZ RS 5l ik PIBK-AKT 15
S A% 45 HIF {553 B . (Rt Wi 5 HIF 3@
P A AR Ay e e AR B ST P,
PR

VBN GTP &5GHH, NN E M Ras [/ 529
(ras homolog enriched in brain, RHEB) &2—1%&5
A8 &R (rapamyein) 3 15 FH A PR 5E B30 i 42
FFRTT M R R R N . AR R
B, FERE A B RIS E T, A (b
F4 S8 L2 B P Y RHEB (315K P35 25 TG
Hoh R U ) RHEB W ik e 7., % W] RHEB
T 24 €00 1% 36 o 107 mh 4y Y H R AR AT [ A
#% H 28 5iE I T 1 (allograft inflammatory factor 1,
AIF-1) ZALASE K A B R g8 v i) — D HE A
-, TEHCE SRR A A 45 AR
W K, A+ @il iy AIF-1 ZEE M E B
Rk AR BB R, RERE R 192 /)
Ao 2 T e 1 AR A A R I, 7RI
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B BRI, A LK R (Y ALIF-1 2 51—
PRI 475 3 A OGP R AT A 1o XA 4 e, (H )
ia a0, AR ERR B TP R AIF-1 B9 FRIA
R I X AR AU B3 5 RS AN RPN o T AE IR 4R
i A AR, bk P R ATF-1 BRI OK S
Xof MEZH ) BEAR —HC, Ud AR S8 300 68 i 74 22 o )
AIF-1 BERIRFEMIA KR . Wb, I AIF-1 fE2% (5
o %) S RN 0t 20 xR SR A 1) o O AL A BTN
)5 [ AR5 0 e R, 2 € B Py R of 3k L2 v
(9 ALF-1 % B v T B30 5 1A fr) I A P A1 4L k2
5 R R UG . B ALF-12 5 iR e IR AR
3L P W AL A A 25 5 o

R AR R P R — A 2 DI REAON A -, AE
JZ A4 N B, Rl S B RIS A G
()38 B P A AR AR . A daETR , 7E
AU g R rh, SR MT 1 Rk K-1E
TR R AR, SR I MR S 3] 8 4800 R Y K
VL BN R WIIG TS TIRERIVKIE . MT 1E6
B2 L UL PRI R AR ) AR A5 R R
JHF B B 1] BB 2 A8 20 6 MT A 32 9 X BT 4 s (R
Aa s ENAFE R ELAAE . WA, #
MT AR A8 36 0 157 30428 7] BB 96 B2 MTF-1 (metal
regulatory transcription factor 1, MTF-1) #1 HIF-1a
Z IR UM EIVE T, PR AN S TR 1) 24 25
B LSRN AEAE TIZ R B MT 3 3h 71 4%
T, AF MT ARS8 I 5 2H SV i 45 (B AE
JHIERR T ifs ) b Mz b, AR — DR R i)
SRR R 52 M0 AT O PR AR 0 2 T4 2.

o PRSP S R A O, AT AR S
TE AL B A8 B S [R1 75 BN PR 45 . AR P (5 54
il Al F (suppressor of cytokine signaling, SOCS) 1F
JE 3 o B 4R DA 1 56 TR B e v A R ek
OB RO . R, SOCS [ 5% n] UIAE Ny 5 4 i
PO A R — R FBREEPIYE (myxovirus
resistance, Mx) J&— T3 2 (interferon, IFN) %
SPUREEE R, HERIK S RGNS A
RPN BRI BL, B ORERZH U Y SOCS-2 Fl Mx
FEARER B30 A A8 T e Rk, 1E
A M8 FF 4R 5 AU RT 8 h N, SOCS-2 il Mx )4
B E LI, SOCS-2 3k BIE ST 1
P, ISR 8 /NI I BIIEAE, SR Mx 1Y 50
ST RITTESE 4 /N kB i, BEJS BRI
A HE] UL, B SRR R . R
B, DR KRB SOCS-2 Fil Mx (133557 i il P in
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*2 WMZEEMBZITHEXER
Tab.2 Related genes affected by hypoxia stress in abalones

5

serial HEH BB S Wkt %R
number gene type gene name species references
1 B S A R HIF-1a. SBP1. NOS. TNF-a%% F taufif] [72-74]
hypoxia-induced genes
2 P DR [ SOD. CAT. TPx. SeGPx. TRx-2%% Al [63]
antioxidant-related genes
3 TR 5 S AT B TR HSF1. HSBP1. HSP90. HSP22. HSP26.  Z:tafifl [13]
heat shock response related genes HSPA0. HSP60. HSP70. HSP105. ¥
112 [ AH 6 52 B ol A5 [R] ZE[R) [64-67]
4 S AR TR AR R A DAD1. CARD%: F trufif] [76-77]
related genes of apoptosis regulation
5 AEE AR SRR R COX1. COX2. PAP. AK%: FEEAf [13]
genes involved in energy metabolism
At fif) [81-82]
6 NF-kB{& 5 18 % AH K FE A MyD88. TLR2. TLR4. TLR6. TRAF2. Fe i fif) [83-84]
NF-«B signaling pathway-related genes TRAF6. NF-kB. NkBI. Akirin2. IRAK4
20N
7 PI3K-AKT/E 5388 i AH G FE ] PI3K. AKT. MEG10. PDGFA. EGFR. Zethfif [19]
PI3K-AKT signaling pathway-related genes HSP90-B. MEG11. TLR2ZFE[R ‘
Elein) [85]
LA 60
8 HoAth G s AR S HE ] RHEB. AIF-1. MT. SOCS-2. Mx“%3%:[A He b [63]
other immune-related genes .
i) [87-89]
Bt

(28 °C) MIsZ M AL /1N o MR I i S FLo B A AN [
AN [F) P9 G 38 A DG 356 R T R A AN ] 194 i 1] B EEL k93
T, R T Lo 4 i PR 7 i 3 G 5%, SOCS-2
ATRESHREAE R RIE, HELZ T, 8 My XH
) B 240 i PR T e R AR AR A T AR TR
I AH 85 3R Gk . X AT RBJE SOCS-2 Al Mx TE4F
JE A T SR E AN R A F Bk, SOCS-2 i
Mo N EE | AR Aa AR AR 4 e R
Al BB SR g FIIE R SN 1545 06, J& i
BLHI G —8 531 LR B DR R 75 2 ik —
5.

3.7 BHREKFHITEIHEE B RINE X

M SR R R N A B (5 B 5 A W DI RE Y
BTN, EE Y, RERS AT
B ARG H— W PR e A s B AR —IRET
(LT B 5 SRAS R AUME B, IR AR AL 1Y A=
PRI R AILRE o Kim 5552 2 38 7 W X6 S 30 B
SAE R SR IR ) SR A BB L AR AR £,
A D =A% ) AU U A0 1 Ak B EL A PR
5@ N RE T o R BFSE A B, TEMRAEMNE T,
A ARRT =A% A B e S B Ay o 2 ] 7 22 S R A
RUE AR (differentially expressed transcripts, DETS)
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e, SO R PR S R AR RO . B B
FER U0 K i AR S e, AN R4 Y
B AR E R R RGP, G G
PR E AR T toll HEZIK(F Tl . PIBK-AKT 55
W E% R NF-«B {5 5@ #5455 . 73 0h, 2% (ol iy il fn
i R E A R O R S i S ey A )
i 3 B R B AN [ g e kAR, e Y LD a4
o7 Xof IR SR 3 PR AL A BT AN ) o bR 552 4
BEAEAT R DO, S ar 5 1) BH 2 20 2 954
A EF IR 265 MEBEIESNES RNA (long
non-coding RNA, IncRNA). i lb A, REE
A2 S INY R, 2RI EEE R E RIS,
TE 3 AR (EH A . R . IR
H) ZEMHA 18 N ERRBMIEH, L8
2 RFIRMIEL B 1.89%, Ui R A
J3E FTREA B T AR R 1 RE . X2 Rk
[ JEP A IncRNA ¥ K fig iR, DNA A i
MAPAT . BTz . REEE . A s sz
AR EAER] . RGN . AR /4R R I AR
i i S I B S LR A AR L R AT DL, AR AR
SIEI O OB S S R uE SRS = ¢ S =R v NI il iz e
FE. P A B ) SRS N A . De 40 I
AT fif0 4 27 Si 4 (1) 22 25 M ke 8 s HL A AR TR
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TR AR IE A, ABLAE 1.17x10° DAL IR
%Z = M (single nucleotide polymorphisms, SNPs)
(e SR 1.37%), A7 21 579 A4S AT LAXE Fr A 4
PRIEAT LR 43 7, 3X 48 SNPs 1) 32 5 4343 BT 1) 45
SRR, 48 K280 SNPs BRI A s 5 REAR S5
AW, MILZT, Ztfe 4k $8 2L (finite state
transducers, Fgr) B EDHT, KA 691 4~ SNPs
Bon UL R TR e . g BLAST i8¢,
BER] 163 NN, Hp&A 1L R
SNPs 3L K A 34 41~ XERBFESHEYY L.
[[ER AN 1 I T i SO <3 T (1 e I (1 o =N T g
MY REDR, 2 AR AT RE fuf 5 14 0 3 7 b, B 22 A 1 1Y)
AR S A e A

3.8 REMEXTE DNA 5 HIE M0

o R, (RE MM 26 DNA M4,
S ME LA 2H DNA [ 58 B PP, WEZEHL K 41 DNA
) 56 B 1Y JT 1 2 — 2 B B 920 (comet assay),
SR ERL A i B S FL K SIS (singlle cell gel electropho-
resis, SCGE) "™ H: [t $HLIE 5 4 Jf b HoAZ R 224 itk
J5, 1% DNA fi#fig, fErZ/EH T, DNA H itk
M IEMER . 75 SCGE H Kt FE v, A2 4 09 2
MifA% DNA BRI ik, e EH T it
MR, BT s EAEZ RN, B
BB TR A G s T 240 1 v e A B Bl 0L DR 4 1)
DNA 7E HL 7 BV FH T 02301 B an 5 2 46 2 i iy 141
1§, BREMEEME, UL DNA 775 U5 W 200 3
%, K5 DNA 7EBi e pise e i i B8 o)) E 2 A1
XA 00 Ak WS4 ) DNA B 2 MXT A S,
IRl A 52 % 1) DNA 5 1T DUAE 155 4 ok 48 = 52 i
DNA # 2y 1EPT, ERE B, W#ERE DNA
AFAERUE W 24 I B4 o KUBE K7 224 X6F 241 it Sk 150 5 1)
fakr, BRI DIWT , (A s
P L PR AL N ZH DNA B HE, XXT3)
Wy K AR A8 R,

AHIE TS L EE AR A 4Ty R R 6 Y 3 PR 2
DNA [} 52 # P X DO 2 A0 S AN [R] o 7 {1 48U
AR, AR 6K DNA 353455 7K SF Fo 2l ) 5 o
%1l DNA $#i4557KF-7E DO AL i A R AT
far s A A, AT R S HAEARE A T Pk
fifi 4n SOD [T P A ik 25 /&7 T Wi AT OC™, T fig
E4ifE 5 DNA #1061 oA ™, s &
THEGAERGER . R IT kW A B 2
DNA $ifj;, XAlGE2EH THiEFR MK, BE
DNA 5 7 HRE 1 N B PTRE Y, 2L 17 150 76 D
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by o B9 WF 5 v 2 AT HRIE AR A 3 X i
DNA 453173 1) 52 Wi BIL ] B2 JHC X o R i 12 24 g ) 2
W B A A AR AR S, H
BT EIREIE R, Bt — R

4 BRI SE b 28 A TR A 4% 1 it

41 BIERFMFERE, EHSERFE

.
Pzl
2
H

i

WAE BN RERLR , TR RSN RaE, & 3
filJsy, B SMNETREEELE, RIRAI S ], S
pp AT FRAE T F7, DI fo DR AR 2R g 2 T UK A
SEAR GG B ) A B A R A o A DD R X
K DO R, —J5 1 B AL R i, T
ZOP BTN, SRR AT I SR A AR
ST R A B T 5 55— 5 TR AR IR AR 8
AT R 2R AN TR SR . BUBRAE TR SR el eIt
Az (BT 80 57 B8 9 3 2 1 38 9B S T SR B i
SEEEE, CRERERIHTANA MR VK BT, BT
SRR A TRL, FRARIRIENAS), SRS S
P s T A T DX S 45 3 L2 VAR 2 3 0 AL e 2
B R Z BRZGT YR T I S5 017 2 /2 R4
BRI, LOREN AR SRR I . 4
oK b R A A D KR A E A E Y
foe e U IR B, A e R E PR R
KA, RE A G /N K, R TR
MPUERI RSN, B s A R, AR D
AHAERR, RO HEE . BT
R RIRDO R o SRR, A TC A 4 S A
BTG, A& A B | e, el s T 3h
i K AR R Sk, TS B AR 5 i
Dy PR3 PR WL A TS 1800 57 9 9 XA S 3 A
K o T A 57 5 WSROI R B FL 3 AU i)
I OIRBOK L GRS . K
I 273 o I F 7 B8 2 554 It A Dl G S A3 f 5
SR G ERRAL, Rk Ve i ARy R
s B R AR T R I AN LG, A S
AR ROV . AL, RINEE H H DO A i
I, S SHUATR S 300 P 107 S IR A B o 7 B R A
PET-BRG, W RLHS SE T e i Bkt O 24T 0
TEALBE, kG AE T Y BT R R M, T FEK Y
DO, M Ay i — A~ RAF 1 A K FR 5

EFRrsE, BT IRE

BAEN 4—10 H 2R 2 4 AR
B 1 Al RO 7 77 B SRS 2 A 0l i .
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R IR XCIRAE SN, R SR BORT 0 22 B 2 ol b T
T AR e M HEA TR SR AR I, A AR A ALY
ol SR B OE AN R RS B, DR O B8 R
DUAFHETE ,  LADSLD AR 0T B ) R

43 FEMRHEM, LFEMREX

1B GE I SRR 5 T R T 2 AR RN BE & 1Y
R, RECLhUERER L, F, NI
JEB AR E S, K 1S 4escl . <R
T 1S At | 0 % PG 4 B H e e
[T AT S Rl 7E 2015—2017 AFEE S S5ITRER
P (SRR, VG AR LS X TR
B LL RS SE B, SRR PE AL B R B T AR K
/IR WA N T =1 R/ = /N (B ST
B BT T HA KR, R IF R P
WA EFHAR RS .

5 BH

B 7EREAE 1) 8—9 H Mk By th AR S aE i 2R
%, XAl ES Y BEAOUR K /NS A,
KR A A G AR T, ik
HAASHR S, SBHEHAK ., AF BRSNS
1k, REBEERSTRBNREIET, 2R,
IR AR M A8 £ B Ay BEL A 7 A M {5 ] R 52 A JR 1)
FEEINFHREE R T, 5B RK)Z 6
o BARBHIE G C 2 B A K S5 1706 . ARt
VR ) 36 1 S5 AR B A A AR A . TR HLAR L Wraa
o7 i R R HL 3 iR 1 4 S5 R[] J2 R R T IR S0y
SE R R AL, E T K T DO AN 2 ) i

S, WX KHR pH, AA . fifbE . WY
PR R G A2 T 1 3 ™= A g, T 7K HP ) 2
SR P A S REP O TN RaAsy: (N1 U=l I8
S O =R Y SRR INY (R0 7 SRR ofi Sf-A
E—E RO N, BEE R T, # A
PG S, HEEEZMEEREMES. H—0
M, BEERENTE, KB DO SR, M6
) DO 53K & £ T /K vh DO HER iy, sk 237
AEARE a2 Ry, HAR I A AR o JCE AR
e HETC A AR 2 06 R MK &R A 1 F ) i
S R IE O, A 2 B R AR AU 2 B i fif
(AT PR R, B A AR AR 36 0 e i
X B AR S I T REAEE S0, Ak, W
B2 TR A5 AR A A 38 X 2160 14 5% 1) £
W, A IR AL -5 A% E W 38 X 6l 1 52 2 8] 4 AR
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SRS HAR Y A, R — 2Rk g K
L35 T XRS5 . 5 —Jrm, T
PRIE % At 2 0 B 5T 0RO 7 AR S e, I R
AOER A TR e S A BTN IR Ty, i) SR B Y
FET-RYRAE, W, Lt — 20 o 57 5 PR 45 1)
AL SE . BeAh, TR {2 1 2
REICTR AR —DEZEN . O T #5758
RO AT RS R, OB R e T, T
R MR SEURT fh FPHYE o 7EXEE 5 IR 1R H]
RG4S B R D700, W B B AR
A TERERT T, e 0l 2 A A ik 2 I AR A 21k
JO7 B R T A 2 R e 7 M . ik PR 2 i B 45 ot
RSB MRS HT ah B, DL SR A A
AT HFEL K

(fE#& F AL E IR A Al i K )
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Research progress on mechanism of response to hypoxia stress in abalone
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Abstract: Aquaculture of abalone has become an important part of China's marine economic development. In
recent years, mass mortality events of farmed abalone caused by hypoxia stress, that combined with hypoxia, had
often occurred, which had brought serious economic losses to the abalone aquaculture industry and had become an
important environmental factor hindering the healthy and sustainable development of the abalone aquaculture
industry. In this paper, research progress on the mechanism of response to hypoxia in abalone is reviewed from the
perspectives of growth, survival, physiological and biochemical indexes (including, heart rate, metabolism, enzyme
activity, pH, etc.), immune function as well as stress response genes and their expression regulation, with a view to
providing a reference for further research on abalone's mechanism of response to hypoxia stress and developing
new varieties of abalone resistant to hypoxia. In addition, the prevention and control measures of abalone hypoxia
stress are also proposed, hoping to help farmers reduce the losses caused by the large-scale death of cultured aba-
lone-caused hypoxic stress in summer.
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